

Colonial Christian Secondary School Science Fair Schedule- Engineering

Date	Assigned	Brief	Turn in
9/2	Design ¹	A sentence or two about what is needed and why.	Printout of
	Question		sentences
9/23	Research	Research 5 or more articles about similar devices,	Printouts of
		components or issues that pertain	read
			materials
10/21	Design:	1. Make up alternative solutions	Rationale
		2. Make up criteria and constraints	paragraph
		3. Rate solutions and choose	
		Type up decision table	Alternatives
		5. Type up rationale	Decision
			Table
11/4	Drawing ²	Draw a neat annotated engineering "blue print" of the	Drawing
		device you intend to build. Your design should be	
		repeatable from your drawing	
3/31	Prototype	Build your device.	Device
		Modify your drawing as you solve problems and come	
		up with solutions.	
4/5	Improve	Write a paragraph or more on the improvements you	Printed
		made during construction and improvements you	Paragraph
		propose for an upgraded version	
4/21	Draft	Type or prepare:	5-10 pg
		1. Problem description (make application very	report for
		clear)	revision
		2. Decision table	
		3. Decision and advantages and disadvantages	
		4. Make a neat version of your design drawing	
		Pictures of operation& graphs	
		6. Display version of prototype	
		7. Improvements	
5/5	Final Check	Grade your project using the CCS Science Fair grading	Document
		rubric and turn the grade sheet in for credit.	
5/12	Present	All previous materials regarded by judges (big grade)	Inspection

¹ A problem they want to solve, or a process or physical design to improve from

https://sciencefaircentral.com/students/engineering-projects

² Engineering drawings should be unambiguous and clear. For any part of a component there must be only one interpretation. The drawing must be complete. The drawing must be suitable for duplication. Drawings must be language-independent. https://www.joshuanava.biz/engineering/requirements-of-engineering-drawings.html

Colonial Christian Secondary School Science Fair Schedule- Experiment

Date	Assigned	Brief	Turn in
9/2	Prob. ³	Problem as a question	Typed
	Statement&	A sentence containing a hypothesis that is reasonable,	Printout
	Hypothesis ⁴	testable and significant.	
9/23	Research	Research 5 or more articles about experiments,	Printouts of
		components or issues that pertain	read
			materials
10/21	Approach	Design a controlled experiment ⁵ or a "blind"	Printed page
		experiment. Identify the independent and dependent	with lists and
		variables, controls.	assessment
		List materials and draw setup (if needed)	plan
		Prepare mathematics to determine if results are	
		significant or not.	
		Assessment sheets and tables	
11/4	Drawing	Annotated pictures of experiment apparatus and	Pics/drawing
		observation methodology	
3/31	Conduct	1. Conduct the experiment.	Data tables
		2. Record data in tables.	Conclusion
		3. Do the math.	Draft 1
	6	4. Draw a conclusion.	
4/5	Abstract [°]	Write a scientific abstract containing motivation,	Paragraph
		problem statement, approach, results and conclusion.	-
4/21	Draft	Type or prepare:	Draft 2 Type
		1. Abstract	report
		2. Hypothesis & motivation	
		3. Approach	
		4. Print pics, drawings, graphs	
		5. Results	
5/5	Final Check	Grade your project using the CCS Science Fair grading	Document
		rubric and turn the grade sheet in for credit.	
5/12	Present	All previous materials regarded by judges (big grade)	Inspection

³ This single phrase defines and directs all of the work you will be doing. From https://classroom.synonym.com/

⁴ The hypothesis is often written using the words "IF" and "THEN." For example, "**If** I do not study, **then** I will fail the test." The "if' and "then" statements reflect your **independent and dependent variables**. From https://harford.libguides.com/c.php?g=321391&p=2150493

⁵ A controlled experiment is one in which everything is held constant except for one variable, Anne Marie Helmenstine, Ph.D., https://www.thoughtco.com/controlled-experiment-609091

⁶ The usual sections defined in a structured abstract are the Background, Methods, Results, and Conclusions.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136027/