
I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 1

Arduino Projects by and D. J. Bouwsma

 Getting Started
 Handling the Components
 Building a Circuit on a Breadboard
 Introductory Projects
 Introduction
 1. Lighting an LED
 2. Using a Button
 3. Making Sounds
 4. Sensing Light
 5. Controlling the LCD
 Advanced Projects
 6. Digital Stopwatch
 7. Digital Thermometer
 8. Music Synthesizer
 9. Memory Game (Skip)

 10. Text Messenger (Skip)
 Robotics Projects
 11. Basic Robot
 12. Sensor Robot
 13. Remote Control
 14. DC Motors

http://www.machinescience.org/

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 2

Breadboard Electronics Components

Although the components used in breadboard electronics projects may appear
fragile, most are surprisingly sturdy. These components will provide many years
of service, provided you follow some simple safe handling procedures.

Figure 1. Breadboard Microcontroller Starter Kit components.

Keeping Batteries Charged

Machine Science's breadboard-based projects run on rechargeable AA batteries,
which are included in the project kits. Since the batteries must be charged before
you begin your projects, it is a good idea to charge the batteries immediately
upon receiving your kit. Each set should be charged for at least 2 to 3 hours.
Battery chargers, like the one shown in Figure 2, are widely available in retail
stores as well as from Machine Science.

NOTE: Never use regular alkaline batteries for breadboard-based projects,
as their voltage differs from the rechargeables.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 3

Figure 2. Battery charger.

Usually, the batteries will last for several weeks on a single charge. When
batteries get weak, projects may not work properly. Therefore, it is a good idea to
charge batteries immediately upon receiving your breadboard kits and to
recharge them on a regular basis.

Avoiding Short Circuits

The number one threat to electronic components is a short circuit--an
arrangement of wires or components that creates a direct connection between
power and ground. In a short circuit, electricity flows freely through one or more
of the components, causing their internal circuitry to heat up. If the short circuit
lasts for more than a few seconds, the components can get very hot, and they
may be permanently damaged.

If you notice any components getting warm to the touch or detect a burning
smell, immediately turn off the battery pack, or disconnect it from the
breadboard entirely. (It's a good idea to turn off the battery pack whenever
anything seems amiss on the board.)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 4

Figure 3. Reversing the battery leads is a common cause of short circuits.

The best way to avoid short circuits is to pay careful attention to directions when
inserting jump wires and components into the board. Particularly close attention
should be paid when connecting or reconnecting any of the following
components:

 The battery pack. Be sure that red lead goes to power, and the black lead
goes to ground. This is probably the leading cause of short circuits.

 The microcontroller. Make sure pins 11 and 32 go to power, and pins 12
and 31 go to ground. Reversing these connections can cause permanent
damage to the microcontroller.

 The LCD. Make sure that the LCD's 10 pins are properly aligned on the
XBoard. Since these are a little hard to see, they occasionally become
misaligned when the LCD is removed and replaced.

 Preventing Pin Damage

 After short circuits, the next biggest threat to the project components is pin
damage--the bending or breaking of the pins that connect components to
the board. The microcontroller is particularly vulnerable to pin damage,
especially when it is being inserted or removed. If the pins become badly
bent, it will be impossible to properly connect the microcontroller, and it will
have to be replaced.

 The microcontroller will need to be removed only in rare instances, but
extreme care should be taken whenever removal is necessary. Figure 4

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 5

shows one safe way to remove a microcontroller from a breadboard. Place
the tip of a flat-head screwdriver under one end of the microcontroller, and
gently pry the chip away from the board. Alternate between the right and
left side of the microcontroller, until the chip is free of the board. When
inserting the microcontroller, or any other component, make sure that its
pins are properly aligned before applying pressure to the device.

Figure 4. Safely removing the microcontroller from the breadboard.

 Reducing Static Shocks

 The microcontroller and the programming board are vulnerable to static
electricity. A spark of static electricity can cause permanent damage to
these components. To prevent this from happening, always touch a metal
surface, such as a door knob or table leg, to discharge static electricity
before handling the electronics projects.

Figure 5. Discharging static electricity.

 The working environment can affect the threat of static electricity. In areas
with low humidity and carpets on the floor, static electricity tends to build
up rapidly. If your environment is particularly prone to static build-up, you
may want to consider wearing an anti-static wrist band, which continuously
discharges static electricity as you work on your projects.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 6

Figure 6. Anti-static wrist band.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 7

Building a Circuit on a Breadboard

Think about all the electronic devices you use every day--computers, cell
phones, video games, digital music players (Figure 1). It's hard to imagine life
without them, isn't it? If you're like most people, you don't know how these
devices are made or how they work. Maybe you've seen the maze of
electronic stuff inside a computer and thought: how could anyone make sense
of all that? Well, the truth is that you don't have to be a genius to understand
how electronic devices are made and how they work. Anyone can do it, and
Machine Science's engaging hands-on projects will show you how.

Figure 1. Common electronic devices.

So, what exactly is all that stuff inside your computer? The simple answer is
electronic circuits, which are arrangements of metal wires and electronic
components (Figure 2). The wires carry electricity between the components,
and the components do things such as store electricity and limit its flow. You
don't need to understand all this yet. Just remember that electronic circuits are
made up of electronic components connected by wires.

Figure 2. Electronic circuits.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 8

The Challenge: Build a Circuit

In this challenge, you will start building your own circuits, using a
professional engineering tool called a breadboard. You will attach a
battery pack to your breadboard, insert a few wires and components,
and learn how to supply power to these components. You will also

learn how to read schematic diagrams, which are the "blueprints" that engineers
use to design circuits.

The Challenge: Build a Circuit
Collecting Your Components

The components for this activity are listed in the table below and shown in Figure
3.

Part Quantity Description

A 1 Breadboard

B 1 Seven-segment display

C 2 Resistors (390 Ohm)

D 2 Jump wires (long red)

E 7 Flexible jump wires

F 1 Battery pack, with 4 AA rechargeable batteries

G 1 Bent connector (two prong)

Figure 3. Components for circuit-building activity.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 9

The Challenge: Build a Circuit
About the Breadboard

The circuits inside modern electronic devices are permanently attached to circuit
boards, but they didn't start out that way. Every circuit in use today began its life
as an experimental arrangement of wires and components. One tool that
engineers use to create experimental electronic circuits is called a breadboard
(Figure 4). Although the breadboard is a professional tool, it is very easy to use.
In fact, you will create all of the circuits you need for your Machine Science
projects by plugging wires and components into your breadboard.

Figure 4. Breadboard.

Figure 5 shows a circuit designed on a breadboard next to a circuit board with a
very similar circuit. Note the correspondence between the components on the
breadboard and the components on the circuit board. Remember: when you are
using the breadboard, you are using a tool that engineers use to design real
circuits!

Figure 5. Breadboard and circuit board.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 10

The Challenge: Build a Circuit
About Rows and Columns

The breadboard has hundreds of tiny holes that hold wires and electronic
components. Figure 6 shows a close-up view of one end of the breadboard.
Notice that each row of holes is assigned a number, and each column is
assigned a letter. This way, the exact position of any hole on the breadboard can
be specified by a combination of a letter and a number. For example, in Figure 6,
the hole in the upper-left corner is hole A1.

Figure 6. Close-up view of breadboard.

Metal strips inside the breadboard make electrical connections between the wires
and components that you plug into certain holes. Look closely at the long edges
of the breadboard. On each side, there are two columns--one marked with a red
line, and the other marked with a blue line. All of the red line holes on a side are
connected to one another, and all of the blue line holes on a side are connected
to one another.

Now, look at the breadboard's numbered rows of holes. Notice that each row has
10 holes--five in columns A to E, and five in columns F to J--separated down the
middle by a shallow groove. Within each row, the five holes in columns A to E are
connected, and the five holes in columns F through J are connected. However,
the breadboard has no built-in connections across the central groove. The
internal connections at one end of the breadboard are marked with green lines in
Figure 7.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 11

Figure 7. The breadboard's internal connections, highlighted in green.

The Challenge: Build a Circuit
Preparing the Breadboard

Before you can build a practice circuit, you need to secure a metal plate to the bottom
of the board. The metal plate will help all of your components function more
consistently. NOTE: If your board already has a metal plate on the bottom, you can
skip this step.

1. Peel the backing from the breadboard, leaving the sticky foam layer in place,
as shown in the video on in Figure 8.

2. Apply the metal plate to the bottom of the breadboard, as shown in the video
and in Figure 8.

Figure 8. Peeling the backing from the breadboard and applying the metal

plate.

The Challenge: Build a Circuit
About Power and Ground

The holes marked with red and blue lines along the edges of the breadboard are
called power holes and ground holes, respectively. These holes have a special
purpose: making it easy to supply electricity to the components in your circuit. No

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 12

matter where you put a component, there's always a power hole and a ground
hole nearby. Think of the power and ground holes as a "power strip" for your
breadboard.

In the next step, you will set up this "power strip" by connecting the battery pack
to the power and ground holes, and using two jump wires to make connections
across the board. The battery pack holds four rechargeable AA batteries. Each
battery supplies about 1.3 volts, so together the four batteries provide just over 5
volts for your breadboard.

Figure 9. Power holes and ground holes.

The Challenge: Build a Circuit
Connecting the Battery Pack

The battery pack is connected to the breadboard by short lengths of red and black
wire. The red wire plugs into one of the holes marked with a red line, and the black
wire plugs into one of the holes marked with a blue line. Two long red jump wires carry
these connections across the board.

1. Insert the batteries into the battery pack, as shown in the video to the right,
taking care to align the positive and negative terminals as marked inside the
pack. NOTE: The batteries should be charged for several hours before their first
use. Never use regular alkaline batteries for Machine Science projects.

2. Make sure the power switch on your battery pack is in the OFF position.

3. Using pliers or scissors, break off a two-segment piece of the 36-prong
bent connector included in the Starter Kit, making a two-prong connector,
as shown in Figure 10A. NOTE: Be sure to keep the remaining segments for
future projects.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 13

Figure 10A. Jump wires connecting power and ground from one side of the

breadboard to the other.

4. Insert the two-prong connector in the holes next to hole J61, as shown in
Figure 10B. Align the red and black wires EXACTLY as shown. NOTE: If the
red wire is on the wrong side, then the connector may be upside-down. Pull
it off, turn it over, and reconnect it to the wires.

5. Connect the red line holes and the blue line holes on each side of the
board by inserting two long red jump wires, as shown in Figure 10B. NOTE:
You will need to bend or trim the wires to get them to fit.

Figure 10B. Jump wires connecting power and ground from one side of the

breadboard to the other.

The Challenge: Build a Circuit
About the Seven-Segment Display

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 14

In the next step, you will add a component to the breadboard called a seven-
segment display. These components are widely used in the numerical displays
on digital clocks, digital thermometers, and other home appliances, such as DVD
players and microwave ovens. Their name derives from the number of individual
light segments required to produce each number on the display. If you look
closely at the devices shown in Figure 11, you can count the individual
segments.

Figure 11. Devices that have seven-segment displays.

The Challenge: Build a Circuit
About Pin Numbers

Figure 12 shows the seven-segment display that you will use in this project. Note
that the component has seven different segments and a decimal point on its top
face. Each segment and the decimal point can be lit individually to produce
different numbers on the display.

Figure 12. Seven-segment display.

Like many electronic components, the seven-segment display has pins on its
underside that connect it with power, ground, or other components. On the
seven-segment display, the pins are numbered from 1 to 10. With the display
oriented so the decimal point is in the lower-right corner of the top face, pin 1 is
under the lower-left corner. The remaining pins are numbered counterclockwise
starting from pin 1, as shown in Figure 13.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 15

Figure 13. Pin numbering on the seven-segment display.

The Challenge: Build a Circuit
Adding the Seven-Segment Display

1. Orient the seven-segment display so the decimal point is in the lower-right
corner of the top face. In this orientation, pin 1 is under the lower-left corner.

2. Plug pin 1 in hole C27, as shown in Figure 14. The remaining pins along the
lower edge of the display should go in holes C28, C29, C30, and C31. NOTE: Be
careful not to bend the pins as you insert the component into the breadboard.

Figure 14. Seven-segment display on breadboard.

The Challenge: Build a Circuit
About Resistors

In the next step, you will connect the seven-segment display to ground, using a
component called a resistor. A resistor limits the flow of electricity in an electronic

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 16

circuit. The resistors in your practice circuit will keep your seven-segment display
from "burning out," like an old light bulb.

Resistors vary widely in terms of their resistance--i.e., how much electricity they
allow through. You can determine a resistor's resistance by looking at the colored
bands on its side. Resistance is measured in units called Ohms. To learn more
about resistors, including how to determine a resistor's resistance, see the
Resistors Quick Reference document. For this activity, you just need to make
sure to use 390-Ohm resistors. Figure 15 shows two ways to identify this resistor.

Figure 15. Two ways to identify a 390-Ohm resistor.

The Challenge: Build a Circuit
Connecting the Display to Ground

Before you can light the display, you have to connect it to ground. Fortunately,
this is easy to do, since you've already set up your power strip. Remember: all
the holes marked with a blue line are ground holes.

1. Make sure the power switch on your battery pack is in the OFF position.

2. Insert a 390-Ohm resistor into the breadboard, connecting hole B29 to
ground, as shown in the video and in Figure 16.

3. Insert a second 390-Ohm resistor into the breadboard, connecting hole
H29 to ground.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 17

Figure 16. Resistors connecting seven-segment display to ground.

The Challenge: Build a Circuit
Lighting One Segment

1. Move the power switch on the battery pack to the ON position.

2. Insert one end of a flexible jump wire into any open power hole (any hole
marked with a red line).

3. Insert the other end into any open hole aligned directly above or directly
below a pin on the seven-segment display, as shown in the video and in Figure
17. NOTE: Do not let the tip of the jump wire touch either resistor - this may
cause a short circuit!

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 18

Figure 17. Flexible jump wire connecting pin B28 with power, causing one

segment to light.

The Challenge: Build a Circuit
Making Numbers and Letters

1. Using a second flexible jump wire, light another segment of the display.
REMEMBER: Never insert the jump wire into a ground hole, and never touch any
part of the resistor.

2. Using additional jump wires, light combinations of segments to produce the
numbers from 0 to 9 on the seven-segment display.

3. Arrange the jump wires to display one of your initials. NOTE: Some letters
cannot be made, and some can be produced only in their lowercase form.

The Challenge: Build a Circuit
Reading Schematic Diagrams

In order to make a record of their circuits, engineers often draw "blueprints" of
their circuits, called schematic diagrams, or just schematics for short. In a
schematic, engineers use pictures to represent each component. Figure 18
shows some of the components you learned about in this unit.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 19

Resistor Seven-Segment Display Power Ground

Figure 18. Schematic representations of circuit components.

In Figure 19, these components are linked together in one diagram. Can you
identify each element of the diagram?

Figure 19. Seven-segment display circuit.

The Challenge: Build a Circuit
Cleaning Up the Breadboard

Congratulations! You've begun building electronic circuits, using the same tools
professional engineers use to create modern electronic devices. Before moving on, do a
little clean up.

1. Move the switch on the battery pack to the OFF position. NOTE: Do NOT

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 20

disconnect the battery pack from the breadboard. You will need the battery pack
in the next unit.

2. Remove the flexible jump wires from the breadboard. NOTE: Leave the two red
wires connecting power and ground across the board.

3. Remove the two resistors from the breadboard.

4. Remove the seven-segment display from the breadboard.

5. Store the components in their original packaging.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 21

Attaching the Arduino Uno to the Bread Board

The Machine Arduino Board is a configuration of wires and components on the
breadboard that will allow you to rapidly build sophisticated electronics and
robotics projects. The Arduino Board's key component is a ATMEGA
microcontroller: a tiny computer on a chip. The microcontroller can be
programmed with a set of instructions, called code, which determine how it
behaves. The Arduino Uno will be the control center for many Machine Science
projects, from digital stopwatches to remote-controlled robots! Figure 1 shows
the completed Arduino Board.

Figure 1. The Arduino Uno attached and wired.

The Challenge: Attach the Arduino Uno

In this challenge, you will attach and wire an Arduino Uno to a
breadboard. In the next unit, you will practice programming the
Arduino, using an existing code file.

The Challenge: Attach the Arduino Uno
Collecting Your Components

The components needed to build the Arduino Board are listed in the table below
and shown in Figure 2.

Part Quantity Description

A 1 Arduino Uno (ATMEGA 328P)

B 1 Broccoli Rubber Band

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 22

C 2 Flexible jump wires (2 long orange)

D 1 1 uf Capacitor

Figure 2. XBoard components.

The Challenge: Attach the Arduino Uno
About the Microcontroller

The microcontroller is the Arduino Uno's "brain," a tiny computer on a chip, which
can be programmed to perform specific tasks. The Arduino's microcontroller,
shown in Figure 3, is just like those found in many commercial devices. It has 28
pins, which plug directly into the Arduino board ports.

Figure 3. The Arduino's microcontroller.

In recent years, microcontrollers have become smaller, more powerful, and less
expensive. As a result, they have been incorporated into more and more
everyday products, from cell phones to home appliances and automobiles.
Figure 4 shows some of the systems in modern automobiles that rely on
microcontrollers.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 23

Figure 4. Automobile systems that rely on microcontrollers.

Figure 5. Top view of the breadboard with the microcontroller installed.

The Challenge: Attach the Arduino Uno
About the Capacitor

Like many electronic devices, the microcontroller is sensitive to surges in power,
which can cause it to malfunction. Occasionally, the battery pack's power surges.
To even out these surges, you will attach a component called a capacitor, which
stores the extra electricity during a surge and then releases it slowly. The
capacitor protects the microcontroller, just as a surge protector protects your
computer from power surges in your home. Figure 8 shows the capacitor.

Figure 8. The 1 uf capacitor (left) and a home surge protector (right).

The Challenge: Attach the Arduino Uno
Installing the Capacitor

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 24

1. Attach your Arduino to the breadboard “the long way” using the rubber
band provided in your kit covering holes 5 through 24, with the digital
ports facing the high numbers on the breadboard, as seen in Figure 10.

Figure 9. Arduino attached and wired up to the breadboard.

2. Install the capacitor on the board so it connects the blue rail to the red
rail to protect the microcontroller. See Figure 10.

Figure 10. Capacitor connected to blue and red rails.

3. Connect the 5v port to the red power rail of the breadboard using a
flexible jumper wire, and connect one of the GND1 ports on the Arduino to
the blue ground rail of the breadboard. Be sure you do not get these wires
confused. Getting these backwards could destroy your Arduino. See
Figure 11.

1
 GND is an abrievaition for ground. It is the negative side of batteries or power supplies.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 25

Figure 11. Arduino 5V and GND ports connected to the breadboard.

The Challenge: Attach the Arduino to a Computer and its electronics
Identifying Your Programming Hardware

To program the microcontroller, you must establish a linkage between your
computer and the Arduino. The Arduino came with USB B port and with two
rows of female headers that plug into the breadboard using jump wires.

 Do not mix
 these up.
t

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 26

Figure 12. Arduino and USB cable.

Features of the Arduino Board

Because it has an internal voltage regulator, the Arduino Uno can be powered by
variety of power sources. Any power source that provides 7 to 12 volts, and has
a Japan Jack also known as an EIAJ connector will work.2

Arduinos are easy to program; they connect up to the USB port of a computer or
device using a USB cable.3 The USB connection also provides power to the
Arduino and small device is connected up to the Arduino. It is very important that
large devices like Motors not be connected directly to the Arduino. Doing so
would damage your Arduino’s delicate circuitry.

The reset button on the top of the Arduino is used to restart the program resident
in the microcontroller. Pressing it will short out the microcontroller chip and make
it restart. Use this to run your circuits.

The output ports shown at the top of figure 12 are the standard digital output

2
 . Japan Jacks are barrel jacks that are 5. 5 mm outside and 2. 1 mm inside.

3
. You need a USB A to USB B, male to male cable.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 27

ports used to program devices. They can be programmed to either be on or off,
or detect a voltage.

Along the bottom of figure 12 are analog input ports. These ports can sense I
voltage between 0 and 5 volts and turn it into a digital number in the program that
will equal between 0 and 100.

Before moving on to the next challenge, take a few minutes to check your
hardware set-up. The following checklist will help you ensure that your XBoard
is ready for programming.

 GND Port: Should be connected to the BLUE rail on the breadboard.
 5V Port: Should be connected to the RED rail on the breadboard..
 Capacitor: The capacitor's pins should be bridging the blue and red rail of

the breadboard.
 Rubber Band: Straps your Arduino on to the breadboard long-wise, with

the digital ports facing the high numbers on the breadboard.

Introduction: Building Blocks

By now, you have set up the microcontroller on the breadboard and learned how
to transfer code from your computer to the chip. In each of the following activities,
you will add basic electronic components to the breadboard--an LED, a button, a
speaker, a sensor, and an LCD--and then write a few lines of code to get them
working. These activities are simple, but there's a lot to learn here, so take your
time and read carefully. The skills you learn in this section will be very important
later on. Figure 1 shows some electronic devices that have LEDs, buttons,
speakers, and sensors.

Figure 1. Electronic devices with LEDs, buttons, speakers, sensors, and

LCDs.

About Outputs and Inputs

Before you get started, take a close look at the microcontroller. A photo of the
chip, taken out of the breadboard, is shown in Figure 2.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 28

Figure 2. Microcontroller.

The microcontroller may seem like a mysterious device, but actually, it interacts
with other electronic components on the breadboard in only two, very simple
ways:

#1 It can set the voltage on any pin HIGH (5 volts) or LOW (0 volts).
#2 It can detect whether the voltage at any pin is HIGH (5 volts) or LOW (0
volts).

It also knows a few other tricks, but that's basically all the chip does: set the
voltage on certain pins, and detect the voltage on others. Coupled with the ability
to store and execute code, these two simple abilities make the microcontroller a
very powerful device.

Consider #1 first. If you connect an output device, such as an LED, to a particular
microcontroller pin, the microcontroller can turn the device on or off by raising
and lowering the voltage on that pin. Remember: electric current flows whenever
there is a voltage difference between one side of a component and the other. In
similar fashion, the chip can control more complex output devices, like speakers,
motors, and the LCD, by raising and lowering the voltage on its pins in precisely
timed patterns.

Now consider #2. The microcontroller can detect whether the voltage at any of its
pins is 5 volts or 0 volts. Imagine that you connect a simple input device, such as
a button switch, to a particular microcontroller pin, and set up the circuit so that
the button connects that microcontroller pin to power (5 volts) when it is pressed
and ground (0 volts) when it is not pressed. The microcontroller can tell whether
the button is pressed or not pressed, simply by detecting whether the voltage at
the pin is high or low.

That, in a nutshell, is how all modern electronic devices work. Think of all the
times you have seen an LED light on your computer keyboard, read text on an
LCD, pressed a cell phone key, or hit a game controller button. Inside those
devices, there were computer chips, raising and lowering the voltage on some

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 29

pins, and detecting high and low voltage on others.

The microcontroller's code is simply the logic that connects the inputs and the
outputs. In this way, a particular input; like hitting the jump button on a game
controller; can trigger a particular output; your game character moves on the
screen.

Identifying Microcontroller Pins

In order to connect new components to the microcontroller, you need to know
how to identify its ports. Figure 3 shows the microcontroller, with a map of its
ports.

(For help finding pins, you can always return to this page or check the Arduino
reference page, which is listed along with other useful Quick References near the
bottom of the project guides list.)

Figure 4. Arduino and USB cable.

1 Lighting an LED

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 30

Light emitting diodes (LEDs) are like tiny light bulbs that emit light when
electricity passes through them. Figure 1 shows yellow, red, and green LEDs.

Figure 1. LEDs.

Because LEDs require very little electricity and last for thousands of hours, they
are becoming increasingly common in electronic devices and other applications.
Your computer keyboard probably has a few LEDs to indicate when the Caps
Lock or Num Lock keys have been pressed. Grouped together, LEDs can
produce enough light to be used as a source of household illumination, as in the
lamp shown in Figure 2.

Figure 2. LED lamp.

Challenge 1: Build a Circuit with an LED

To start this activity, you will build a circuit on the breadboard
with an LED, a resistor, and a flexible jump wire.

Challenge 1: Build a Circuit with an LED

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 31

Collecting Your Components

You will need the following components for this activity (shown in Figure 3):

Part Quantity Description

A 2 LEDs

B 2 Flexible jump wires

C 2 220-Ohm resistors

Figure 3. Components for the LED activity.

Challenge 1: Build a Circuit with an LED
About LEDs

Every LED has a specific polarity, meaning one of its two pins must connect to
the power side of the circuit and the other pin must connect to the ground side. A
tiny flat segment on the round rim of the LED's circular base marks the ground
pin. The power pin is typically longer than the ground pin, but this is an unreliable
indicator, since the pins may be trimmed during installation. Figure 4 shows
these distinguishing features.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 32

Figure 4. LED polarity.

Challenge 1: Build a Circuit with an LED
Adding the LED

The LED's ground pin is connected to ground by a 220-Ohm resistor, and its
power pin is connected to the microcontroller by a flexible jump wire.
1. Using a 220-Ohm resistor, connect hole J31 to ground. Then insert the
LED, with its power pin in hole G30 and its ground pin in hole G31, as
shown in Figure 7.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 33

Figure 7. Adding the LED and resistor.

2. Using a flexible jump wire, connect the LED's power pin (hole I30) to Port
7 on the Arduino, as shown in Figure 8. (If you need help finding Port 7,
consult the Arduino Quick Reference page at the end of this document.)

Figure 8. Connecting the LED to the Arduino.

Challenge 2: Write Code to Control the LED

With your LED hooked up to the Arduino, you can control it
automatically; turning it on, turning it off, and making it flash.
This will be your first chance to write your own C code for the
microcontroller.

Challenge 2: Write Code to Control the LED
About C Code

A C program is a series of instructions that tell the microcontroller in the Arduino
what to do. The microcontroller on the Arduino board executes these instructions
in sequence from top to bottom. Statements can be combined into larger groups,
called functions, which enable the microcontroller to perform more complex
operations. In order for the compiler to understand your instructions, the program
must always be "wrapped" with a few specific lines of code. Figure 9 shows a
simple C program, with these important "wrapping" parts identified. You don"t
have to get this program working yet; just look at it and try to understand its basic
structure.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 34

This is example named BareMinimum is
found under file, examples and 01.basics.

void setup() {
 // put your setup code here, to run once:

}

void loop() {
 // put your main code here, to run
repeatedly:

}

Pull this program up to make it easier to write programs for your Arduino.

If you don"t understand every line of the program, don"t worry. Just remember
three things:

Every main function must be contained in curly braces: { and }

Every Arduino program has a setup() function and a loop() function.

Everything after // is ignored, so programmers can write notes there.

Challenge 2: Write Code to Control the LED
Turning the LED On

OK. You are ready to write a simple program to turn on the LED. Your program
has two control statements: setup() and loop(). Commands placed in between
setup()’s brackets {}, are run one time, right as the program starts. Commands
placed in between loop()’s brackets {}, are run over and over, after setup() is
done. In our program, setup() sets up Port 7 (the pin connected to the LED) as
an output pin, meaning electricity can flow out of it; the second statement, in
loop(), sets the value of the Port 7 pin high, meaning its voltage is 5 volts.

1. Open the Arduino IDE.
2. Type the following code in the window. NOTE: You don"t have to type
the comments, but it is good practice to do so.

// Program 1-1LED

The word void tells the microcontroller
not to provide an answer.
Functions, like setup() and loop()
always begin and end with brackets.
All commands between the brackets
are executed when the function is
executed.

Text preceded by slashes, // are
comments. They are ignored by the
computer. Programmers use them to
write notes to the people reading the
program.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 35

// Lights an LED connected to port 7

// the setup function runs once when you press reset or power the board
void setup() {
 pinMode(7, OUTPUT); //set up port 0 to output 5 volts
 }

// the loop function runs over and over again forever
void loop() {
 digitalWrite(7, HIGH); // turn the LED on (HIGH is voltage 5 volts)
}

3. Save your code file as ledon.
4. Compile and test your code by clicking the run arrow.

Your LED should now light and stay lit. Electricity is flowing from the Port 7 pin,
which has a value of 5 volts, through the LED and the resistor to ground, which
has a value of 0 volts.

Programming Challenge
Move one end of the flexible jump wire from Port 7 to Port 8, leaving the
other end in hole H30. Note what happens. Now, leaving the flexible jump
wire in place, change the code in ledon to make the LED light up again.
HINT: You will need to modify two lines in your program. When you have
finished, return the jump wire to its original position.

Challenge 2: Write Code to Control the LED
Turning the LED Off

Turning an LED off is as simple as turning it on. You simply set the pin it is
connected to low (0 volts), instead of high (5 volts). This way, the voltage at the
pin is the same as the voltage at ground, and no electricity flows through the
circuit.

1. Rename your code file ledoff.c.
2. Modify your code file, as follows:

// program ledoff

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 36

// the setup function runs once when you press reset or power the board
void setup() {
 pinMode (7, OUTPUT); //set up port 0 to output 5 volts
 }

// the loop function runs over and over again forever
void loop() {
 digitalWrite (7, LOW); // turn the LED on (LOW is voltage 0 volts)
}

3. Compile and test your new code.

Challenge 2: Write Code to Control the LED
Turning the LED On and Off

So now you know how to turn an LED on and off. How about doing both of these
things these things in one program? To do this, you will need to introduce a new
instruction in your code, called a delay(). A delay statement tells the
microcontroller to wait for a specific period of time before executing the next
instruction. Depending on what type of delay statement you use, these intervals
are measured in milliseconds (1/1000ths of a second) or microseconds
(1/1,000,000ths of a second), as shown in Figure 10.

Figure 10. Two types of delay statements.

Challenge 2: Write Code to Control the LED
Making the LED Flash

1. Rename your code file ledflash.c.
2. Modify your code file, as follows:

// the setup function runs once when you press reset or power
the board
void setup() {
 // initialize digital pin LED_BUILTIN as an output.

Two commands to wait.

delay(ms) – Where ms is the number of milliseconds. (1ms = 1/1,000 second = 0.001 second)

delayMicroseconds(us) – Where us is the number of microseconds. (1us = 1/1,000,000

second = 0.000001 second)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 37

 pinMode(7, OUTPUT);
 }

// the loop function runs over and over again forever
void loop() {
 digitalWrite(7, HIGH); // turn the LED on
 delay(1000); // wait for a second
 digitalWrite(7, LOW); // turn the LED off
 delay(1000); // wait for a second
}

3. Compile and test your new code.

Programming Challenge
Change your delay statements to make the LED flash even faster. How
fast can you go before your eyes can't even tell that it's flashing? Change
the condition for your while...loop to something else that's always true,
such as 5==5, or 9>6. Does this affect your program at all?

Challenge 2: Write Code to Control the LED
Add a Second and third LED

Before moving on to the next activity, for even more credit,
add a second LED to the breadboard, placing its pins in
holes G36 and G37. As before, use a 220-Ohm resistor to
connect the LED to ground, and use a flexible jump wire to
connect the power pin to Port 8 on the microcontroller, then
add a third LED and connect it to port 9.

Modify your program to light the LEDs in sequence.

LED SEQ EC

Show your work to
the instructor for an
extra credit grade.

Blink

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 38

2 Using a Button

A button is a switch that completes or interrupts an electric circuit, much like a
switch for a household appliance. Buttons are commonly used to provide input
to electronic devices, such as the texting device and game controller shown in
Figure 1.

Figure 1. Electronic devices with buttons.

Challenge 1: Build a Circuit with a Button

In this Challenge, you will build a circuit on the breadboard that
allows you to control the LED with a button.

Challenge 1: Build a Circuit with a Button
Collecting Your Components

For this activity, you will need the following components (shown in Figure 2):

Part Quantity Description

A 1 Button switch

B 1 Flexible jump wire

C 1 10,000-Ohm resistor

D 1 Pre-bent jump wire (yellow)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 39

Figure 2. Components for the button activity.

Challenge 1: Build a Circuit with a Button
Adding the Button

Figure 3 shows the type of button included in the Machine Science Starter Kit.
These are referred to as momentary switches, because their two pins are
connected only while the button is pressed and held down. As soon as you take
your finger off the button, the connection is broken.

Figure 3. Button switch.

1. Add the button to the breadboard, putting its pins in holes F41 and F43.
Connect one side to ground with a 10,000-Ohm resistor, and connect the
other side to power with a yellow jump wire, as shown in Figure 4.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 40

Figure 4. Adding the button.

2. Using a flexible jump wire, connect the ground side of the button to Port
6 on the Arduino, as shown in Figure 5. (If you need help finding Port 6,
consult the Arduino Quick Reference at the end of this document.)

Figure 5. Connecting the button to the microcontroller.

Challenge 1: Build a Circuit with a Button
How the Button Works

Look closely at the button connections on the breadboard. One side of the button
is tied to ground, through a resistor, and the other side is tied to power. On the
ground side, there is also a flexible jump wire connecting to Port 6 on the
Arduino. This means that, when the button is not pressed, Port 6 will be at 0
volts, i.e. low. When the button is pressed, Port 6 will be tied to 5 volts, i.e. high.
Figure 6 shows this relationship.

Button State Port 6 State

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 41

Not Pressed 0 Volts (LOW)

Pressed 5 Volts (HIGH)

Figure 6. Button state and Port 6 state.

Challenge 2: Write Code for the Button

In this challenge, you will write code so that you can use the button to
control the LED.

Challenge 2: Write Code for the Button
Turning the LED On

To use the switch to turn on the LED, you need to introduce a new programming
structure into your code; an if... statement. An if... statement tells the
microcontroller to execute a segment of code if a certain condition is true. In this
case, your if... statement will tell the microcontroller to light the LED if the voltage
at Port 6 is HIGH (in other words, if the button is pressed.)

1. Rename your code file buttonpress.c.
2. Modify your code file, as follows:

int button = 0; // Used to store the button state

void setup() {
 pinMode(13, OUTPUT); // The built in LED
 pinMode(6, INPUT); // The switch
}

void loop() {
 button = digitalRead(6);

 if (button == HIGH) {
 digitalWrite(13, HIGH); // LED on
 }
}

3. Compile and test your new code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 42

Challenge 2: Write Code for the Button
Turning the LED On and Off

It is also possible to extend your if... statement, so that the microcontroller
executes another segment of code if the condition is not true. This is known as
an if...else... statement, because it causes the microcontroller to do one thing if a
condition is true, or else it does another thing. In this case, your code will light the
LED if the button is pressed, or else it will turn the LED off.

1. Rename your code file buttononoff.c.
2. Modify your code file, as follows:

int button = 0;

void setup() {
 pinMode(13, OUTPUT);
 pinMode(6, INPUT);
}

void loop() {
 button = digitalRead(6);

 if (button == HIGH) {
 digitalWrite(13, HIGH); // LED on
 } else {
 digitalWrite(13, LOW); // LED off
 }
}

3. Compile and test your new code.

Programming Challenge
Modify your code so that the green
LED turns on if the button is
pressed, and the red LED turns on if
the button is not pressed.

Button

Show your work
to the instructor
for a grade.

Button 2LED EC

Show your work to
the instructor for an
extra credit grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 43

3 Making Sounds

The headphones used to produce sounds from portable MP3 players, like
Apple's iPod are just tiny speaker's controlled by signals sent from a computer
chip. Figure 1 shows some typical "earbud" style speakers.

Figure 1. "Earbud" style headphone speakers.

Challenge 1: Build a Circuit with a Speaker

To start this activity, you will add a speaker to the breadboard.

Challenge 1: Build a Circuit with a Speaker
Collecting Your Components

For this activity, you will need the following components (shown in Figure 2):

Parts Quantity Description

A 1 Piezo speaker

B 1 Bent connector (two prong)

C 1 Flexible jump wire

D 1 Pre-bent jump wire (orange)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 44

Figure 2. Components for the speaker activity.

Challenge 1: Build a Circuit with a Speaker
Adding the Speaker

The speaker connects to ground with an orange jump wire and to Port 2 on the
microcontroller with a flexible jump wire.

1. Add a two-prong connector, an orange jump wire, and the speaker to the
breadboard, as shown in Figure 3. NOTE: Be sure to align the black
speaker wire with the jump wire to ground.

Figure 3. Adding the speaker.

2. Using a flexible jump wire, connect the red wire side of the speaker to
Port 2 on the Arduino as shown in Figure 4. (If you need help finding Port 2,
consult the Arduino Quick Reference at the end of this document.)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 45

Figure 4. Connecting the speaker to the microcontroller.

Challenge 1: Build a Circuit with a Speaker
About the Speaker

The speaker used in this activity is called a piezo-electric speaker. The key
component in the speaker is a material that bends slightly when you supply
electricity to it. If the electricity is sent in pulses, the element vibrates back and
forth. Just like the movement of a saxophone reed or a guitar string, this vibration
produces audible sound waves in the air. To make the piezo-electric element
vibrate, you need to raise and lower the voltage on Port 2, alternating between 0
volts and 5 volts. Figure 5 shows how the voltage signals make the piezo-electric
element move.

Figure 5. Voltage signals making piezo element move.

Challenge 2: Write Code to Control the Speaker

In this challenge, you will learn to control the speaker. You will
be able to make a simple click, a sustained tone, and many
different tones. This will be another opportunity to write more C
code for the microcontroller.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 46

Challenge 2: Write Code to Control the Speaker
Making a Click

Using simple program, much like your LED control code, you can cause the
speaker to make a clicking sound.

1. Rename your code file click.
2. Modify your code file, as follows:

// Program click

void setup() {
 pinMode(2, OUTPUT); //set up port 2 to output 0 or 5 volts
 }

void loop() {
 delay(1000);
 digitalWrite(2, HIGH); // HIGH is voltage 5 volts LOW is 0 volts
}

3. Compile and test your new code.
4. Press the reset button a few times, while pressing the speaker up to your
ear, you should hear a clicking sound each time.

Challenge 2: Write Code to Control the Speaker
Making a Sustained Tone

By putting a bunch of clicks together in a while... loop, you can make the speaker
produce a sustained tone. Note that in the code file shown here, the delay is in
microseconds (delayMicroseconds), not in milliseconds (delay).

1. Rename your code file sustained.
2. Modify your code file, as follows:

// Program sustained

void setup() {
 pinMode(2, OUTPUT);
 }

Sound

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 47

void loop() {
 digitalWrite (2, LOW); // 0 volts
 delayMicroseconds (1000);
 digitalWrit e(2, HIGH); // 5 volts
 delayMicroseconds (1000);
}

3. Compile and test your new code.

Programming Challenge
Modify your code file to produce different tones. HINT: The value in the
delay_us statement is the key.

Challenge 2: Write Code to Control the Speaker
Using the Tone Function

Because controlling the speaker is so much fun, BCMI, the company that makes
Arduinos, has created a special function just for that purpose. This function,
called tone(), makes it very easy to control the speaker. Each time you use the
tone function you have to give it three numbers: the first number is the pin
number; the second is the frequency (in Hertz) of the note you want; the third
number is the duration in milliseconds. For example, the statement tone(440,
200); will produce a note of 440 Hertz for 200 milliseconds. Duration can be left
off, leaving only the pin and the frequency.

You can stop the sound using the notone function. It needs only one piece of
information, the pin number.

tone (pin, frequency, [duration])
notone (pin)

1. Rename your code file tonefunction.
2. Modify your code file, as follows:

// Program tonefunction

void setup() {
 pinMode(2, OUTPUT);
 }

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 48

void loop() {
 tone(2, 988, 320);
 delay(1000);
}

3. Compile and test your new code.

Programming Challenge
Modify your code file to change the frequency and the duration of the tone
produced by the speaker. Try adding some additional notes.

Challenge 2: Write Code to Control the Speaker
Putting Tones in a Loop

With a while loop, you can make any sequence of tones repeat over and over.

1. Rename your code file twotones.
2. Modify your code file, as follows:

// Program 1-3twotones

void setup() {
 pinMode(2, OUTPUT);
 }

void loop() {

 tone (2, 440);
 delay (200);

 tone (2, 535);
 delay (100);
}

3. Compile and test your new code.

Challenge 2: Write Code to Control the Speaker
Using a For... Loop

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 49

With a different kind of loop, you can make the frequency of the tone rise or fall.
To do this, you will need to introduce two new elements into your code. The first
is a variable. A variable is letter or phrase that is assigned a numerical value,
which can change over time. In this case, your variable will be called x. The
second is a for... loop. A for... loop repeats a segment of code a specific number
of times and then stops.

1. Rename your code file forloop.c.
2. Modify your code file, as follows:

// Program forloop

int x;
void setup() {
 pinMode(2, OUTPUT);
 }

void loop() {
 for (x=250; x<750; x=x+1){
 tone(2,x);
 delay (2);
 }
}

3. Compile and test your new code.

Programming Challenge #1
Modify your code so that the tone falls instead of rising each time through
the loop. HINT: You will need to change three things in the statement
setting up the for loop.

Programming Challenge #2
Wrap your for loop inside a while loop so that the each rising or falling
tone sequence repeats over and over, like a siren.

Siren

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 50

Programming Challenge #3
Add code to make the LEDs flash in time with the speaker.

Challenge 2: Write Code to Control the Speaker
Making a Melody

By stringing together individual tone statements, you can program the
microcontroller to make a simple melody.

1. Rename your code file melody.
2. Program the microcontroller to play the first seven notes of Mary Had A
Little Lamb, using the following table of frequencies and durations as your
guide:

3. Compile and test your new code.

Mary EC

Show your work to
the instructor for an
extra credit grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 51

4 Sensing Light

Because they do not flash or make noise, sensors are less noticeable than the
other electronic devices in the world around us, but they are becoming
increasingly common. Often, they are used to monitor the environment and
trigger actions that human beings may forget or neglect to do--for example,
turning a car's windshield wipers on when it starts to rain, or flushing a toilet
automatically when a user exits a stall. In other cases, sensors are used to
maintain desired conditions when human beings are not around at all--for
example, activating the furnace when a house's temperature drops, or turning on
a lamp when it gets dark. Figure 1 shows some of these common sensors.

Figure 1. Electronic devices with sensors.

Challenge 1: Build a Circuit with a Light Sensor

In this challenge, you will add a light sensor, also known as a
photoresistor (or phototransistor) to the breadboard.

Challenge 1: Build a Circuit with a Light Sensor
Collecting Your Components

For this activity, you will need the following components (shown in Figure 2):

Part Quantity Description

A 1 Light sensor (photoresistor)

B 1 Flexible jump wire

C 1 Orange jump wire

D 1 Resistor (10,000 Ohm)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 52

Figure 2. Components for the sensor activity.

Using a Phototransistor as a Sensor (Instead of Photoresistor)
If you have a photoresistor, click here.
The QSD123 NPN Phototransistor will send a signal when light strikes it and stop when the light stops.
The phototransistor looks like a black LED. The yellow jump wire is connected to the long lead on the

transistor on the opposite side
side to the cut off rim. Both of
these
wires are connected to power
using a 10K Ω resistor that
gives the circuit TTL voltage.
The wire on the side with
a cut off rim is connected to
the ground.

This sensor will respond to sunlight and incandescent light,
but does not respond to light produced by florescent lighting
very well. Click here to continue.

Challenge 1: Build a Circuit with a Light
Sensor (Photoresistor only)
Adding the Sensor to the Board

Cut
Off
rim

Collector
5v dc &
10K Ω R

Emitter
to GND

Base Light
turns it on

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 53

The installation of the light sensor is similar to that of the button, with one side
connected to ground, the other side connected to power, and a flexible jump wire
spanning to the microcontroller.

1. Insert the light sensor"s two pins into holes H54 and H55. The ground
pin, marked by the flat edge on the rim of the sensor, should go in hole H54
and be connected to ground by an orange jump wire. The sensor's power
pin should go in hole H55 and be connected to power with a 10,000-Ohm
resistor. A flexible jump wire should then be connected to the power side
of the sensor (hole F55), as shown in Figure 3.

Figure 3. Adding the light sensor, resistor, and jump wire.

2. Connect the loose end of the flexible jump wire to Port A0 on the
microcontroller.

Challenge 1: Build a Circuit with a Light Sensor (Both resistor and transistor)
About the Light Sensor

At the beginning of this section, you learned that the microcontroller has two
essential abilities:

#1 It can set the voltage on any of its pins HIGH (5 volts) or LOW (0 volts).
#2 It can detect whether the voltage at any of its pins is HIGH (5 volts) or
LOW (0 volts).

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 54

In fact, on certain pins, the microcontroller can measure the exact voltage at the
pin, as long as the voltage is between 5 volts and 0 volts. These pins are called
analog ports, because they can measure a range of values, rather than just
detecting high or low values.

The light sensor is a light-sensitive resistor, whose resistance decreases with the
amount of light falling on it. When you added the light sensor to the breadboard,
you tied one side of the component to ground and the other side to power and an
analog port (Port A0). Configured in this way, the light sensor effectively puts a
voltage at Port A0 that ranges from 0 volts to 3 volts, depending on how much
light the sensor detects. The microcontroller then converts this voltage value into
a number ranging from 0 to 1024, using its built-in analog-to-digital converter, or
ADC. Figure 4 shows approximately how these values are related.

Light Level Voltage at Port A0 ADC Value

Very Bright 0.00 volts 0

Bright 0.75 volts 256

Medium 1.50 volts 512

Dim 2.25 volts 768

Very Dim 3.00 volts 1024

Figure 4. Relationship among light level, voltage, and ADC value.

The light sensor included with the Starter Kit can sense only certain types of light.
It sees incandescent and sunlight well, but it cannot detect infrared light, as
shown in Figure 5.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 55

Figure 5. Sources of light detected by the sensor.

Challenge 2: Write Code for the Light Sensor

In this challenge, you will write code to gather input from the light
sensor.

Challenge 2: Write Code for the Light Sensor
Controlling the Speaker

Sensors are not very useful unless they are used to control output devices. In
this activity, you will use the sensor to control the tone produced by the speaker.
To do this, you will again need to have a variable in your code, called reading.
You will set the value of reading equal to the analog value from Port A0, and then
pass this value to the computer using serial.print(), a command that sends
information back to the computer using the USB wire.

1. Rename your code file sensorspeaker.c.
2. Modify your code file, as follows:

//Project 5.01 Read the phototransistor

int reading = 0; // a variable to store the light sensor reading

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 56

void setup(){
 pinMode(A0,INPUT);
 Serial.begin(9600);
}

void loop(){
 reading = analogRead(A0); // Get analog reading
 Serial.println(reading); //Send reading to computer
 delay(100);
}

// To see the reading, go to: Tools, then Serial Monitor

3. Compile and test your new code.

Programming Challenge
Modify your code so that the value returned by the light sensor affects the
duration of the tone, rather than the frequency. HINT: You will have to set
the frequency to a fixed value, such as 440.

Challenge 2: Write Code for the Light Sensor
Controlling the LED

Now imagine that the LED is a light in your house, and you want to turn it on
whenever it gets dark in the room. The code in this section shows one way of
doing this.

1. Review how to light up an LED.
2. Review the tone function.
3. Write a program that converts the light level into tones.

1. Rename your code file sensorled.
2. Modify your code file, as follows:

//Night Light Program

int reading = 0;

void setup(){
 pinMode(A0,INPUT);
 pinMode(13,OUTPUT); // Port 13 with a built-in LED
}

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 57

void loop(){
 reading = analogRead(A0); // Get analog reading

 if (reading>512){ // High numbers are dark
 digitalWrite(13, HIGH); } //Turn on LED

 delay(1);
}// end loop

4. Compile and test your new code.

Programming Challenge
Modify your code so that the value returned by the light sensor affects the
duration of the tone, rather than the frequency. HINT: You will have to set
the frequency to a fixed value, such as 440.

Programming Challenge
Program the board so that it makes a continuous tone in the dark, and
goes silent when there is light. What would happen if you put a board
programmed this way in the refrigerator?

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 58

5 Controlling the LCD

These days, digital text displays are everywhere, from the screens on MP3
players to electronic book readers, such as those shown in Figure 1. Have you
ever wondered how these displays work? In this activity, you will learn to send
text to an LCD screen, position this text on the screen, and even make your text
flash and move!

Figure 1. Text display screens.

About the LCD

A liquid crystal display (LCD) contains a thin layer of liquid crystal that changes
from light to dark when electricity is supplied to it. LCDs can display text and
graphics, like a miniature computer screens. LCDs are everywhere--in digital
watches, household appliances, and handheld video games. Figure 16 shows
the most common type of LCD we will be using.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 59

Figure 16. Liquid crystal display (LCD).

Challenge 1: Install the LCD

In this section you will install and program a standard LCD. To do
this, you may have to move other components that you added in
other activities. You can either remove these components, or move
them to another section of the board. Remember: as long as

components are connected to power, ground, and the microcontroller, it doesn't
matter where you put it on the board.

Challenge 1: Re-Install the LCD
Collecting Your Components

This project makes use of a 16x2 LCD display, which is shown in Figure 2. The
LCD is connected to the breadboard by 10 pins. These pins supply power to the
LCD and transmit data from the microcontroller, controlling the text on the
screen.

Figure 2. LCD.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 60

Challenge 1: Install the LCD
Putting the LCD Back

1. Use yellow jump wires to connect A42, A45 and A49 to ground; use
an orange wire to connect A46 to power, and connect E42 to E47
using a green jump wire, as shown in Figure 3.

Figure 3. Connecting power and ground for the LCD.

2. Use long orange jump wires to connect port 12 on the Arduino to E48,
and port 11 to E50

3. Use four long yellow jump wires to connect port 2 to E58, port 3 to
E57, port 4 to E56 and port 5 to E55, as shown in Figure 4.

If you have WCS’s new BC1602HGPLEH$ LCD

Remove the orange jump wire the red arrow is pointing
at from A42 to the ground, and replace it with a 4.7 K
ohm resistor.

Caution:
Make this change
only if your kit has a
BC1602HGPLEW$
LCD.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 61

Figure 4. Connecting the Arduino to the breadboard.

Figure 17. XBoard with jump wires for LCD installed.

2. Insert the LCD's pins into holes I17 to I20 and holes I25 to I30, as shown
in Figure 18. (Westminster’s new BC1602HGPLEH$ LCD inserts the same
way)

4. Attach the LCD in row C pushing its pins into holes C45 through C58,
as shown in Figure 5. It is very important that the wires like up
correctly with the wires on the breadboard. Check to make sure the

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 62

right most pin on the LCD is in hole C58, before connecting your
Arduino to the USB port.

Figure 5. Attaching the LCD.

Challenge 2: Write Code for the LCD

In this challenge, you will learn to control an LCD, which is just like
the ones found in hand-held electronic devices. First, you will learn to
send simple lines of text to the LCD. Then, you will learn to position
text on the LCD. Finally, you will learn to make text flash and move.

Challenge 2: Write Code for the LCD
Sending Text to the LCD

Your first C program will display a simple line of text on the LCD: "Hello World!"
1. Rename your file text.c.
2. Modify your code file, as follows:

// Hello World Program

#include <LiquidCrystal.h>

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 63

//Tell Arduino which ports to use for the LCD
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
 lcd.begin(16, 2); //Command to active the LCD
 lcd.print("hello, world!");
}

void loop() { }

3. Compile and test your new code.
4. Check out the LCD. It should be displaying "Hello World!"

Programming Challenge
Change your code to get the microcontroller to display different text (e.g.,
your name). Try a few different lines of text.

Challenge 2: Write Code for the LCD
About the LCD's Cursor

Although you cannot see it, the LCD has a cursor, which determines where text
will be displayed each time you use the lcd.print command. If you look closely at
the LCD, you will notice that it has two lines of text, with 16 characters in each
row--a total of 32 character positions in all. Figure 6 shows the LCD with a
different numeral in each position. Using the lcd.setCursor(Column,Row)
command, and the lcd.begin(16, 2) command that tells the Arduino how many
columns and rows your LCD has, you can position the cursor at any one of these
32 positions.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 64

Figure 6. LCD with a few character positions labeled.

Challenge 2: Write Code for the LCD
Positioning Text on the LCD

With an lcd.setCursor() statement, you can control the precise location of text on
the LCD.

1. Rename your code file GodRules.
2. Modify your code file, as follows:

// God Rules Program
#include <LiquidCrystal.h>

//Tell Arduino which ports to use for the LCD
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
 lcd.begin(16, 2); //Command to active the LCD
 // set up the LCD's number of columns and rows:
 lcd.begin(16, 2);
 lcd.print("hello, world!");
}

void loop() {

 lcd.setCursor(0, 1); // Go to 0 across and 1 down
 // note: LCDs count starting from zero
 lcd.print("God rules");

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 65

 }

3. Compile and test your new code.

Programming Challenge
Change the values in the lcd_instruction(GOTO) statement to reposition
"Hello World!" in the lower right hand corner of the LCD. Then, place one
line of text on Line 1 of the LCD and another line of text on Line 2 of the
LCD.

Challenge 2: Write Code for the LCD
Making Text Flash

By displaying a line of text, clearing the screen, and then displaying the text
again, you can make your text flash on and off. With delay statements, you can
control the precise rate of flashing.

PROGRAMMING NOTE

You can cut and paste text in the Programming Portal, just as you would in a normal

word processing program. This feature may come in handy in the next step, since there
are many repeated lines of code. (The repeated segment is highlighted.)

1. Rename your code file flash.
2. Modify your code file, as follows:

// Flash program

// Flash Program

#include <LiquidCrystal.h>

//Tell Arduino which ports to use for the LCD
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
 lcd.begin(16, 2); //Command to active the LCD
 // set up the LCD's number of columns and rows:
 lcd.print("hello, world!");
}

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 66

void loop() {

 lcd.setCursor(5, 0); // 6 over, top line
 lcd.print("Jesus");
 lcd.setCursor(4, 1); // 5 over bottom line
 lcd.print("is Lord");
 delay(250);

 lcd.clear();
 delay(250);
 }

3. Compile your code and download it to the microcontroller.
4. Check out the LCD. "Jesus is Lord” should flash on the screen

Programming Challenge
In your flash.c file, change all the delays to 5,000 milliseconds. Try a
5,000-microsecond delay, then a 200-millisecond delay.

Challenge 2: Write Code for the LCD
Making Text Move

Text on the LCD can be made to move to the left or the right, using the following
two statements: lcd.scrollDisplayRight() and lcd.scrollDisplayLeft () Each of
these statements takes all of the text on the LCD and moves it one character to
the left or right. By pairing these statements with delay statements, you can make
your text appear to scroll--like the "tickers" that are often used to display sports
scores, stock prices, and news headlines.

1. Rename your code file scroll.c.
2. Modify your code file, as follows:

// Scroll Program
#include <LiquidCrystal.h>

//Tell Arduino which ports to use for the LCD
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 67

 lcd.begin(16, 2); //Command to active the LCD
 // set up the LCD's number of columns and rows:
 lcd.print("God is love");
}

void loop() {

 lcd.scrollDisplayRight();
 delay(100);
 lcd.scrollDisplayRight();
 delay(100);
 lcd.scrollDisplayRight();
 delay(100);
 lcd.scrollDisplayRight();
 delay(100);
 lcd.scrollDisplayRight();
 delay(100);

 lcd.scrollDisplayLeft();
 delay(100);
 lcd.scrollDisplayLeft();
 delay(100);
 lcd.scrollDisplayLeft();
 delay(100);
 lcd.scrollDisplayLeft();
 delay(100);
 lcd.scrollDisplayLeft();
 delay(100);

 } // end loop

3. Compile your code and reprogram the microcontroller.
4. The words should scroll to the right and then to the left. To restart your
code, just press the reset button.

Programming Challenge
Change the lcd_instruction statements to move the text in new ways.
What happens to text when it moves off the screen? Does it ever come
back? Add code to display text on both lines of the LCD. Do both lines
move in the same way? Change the delay_ms values to speed up or slow
down the rate at which the text scrolls.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 68

Challenge 2: Write Code for the LCD
Practice Debugging

Looking for errors in your code is called debugging. Debugging is an important
skill. By this point, you have probably already encountered at least one error or
"bug" in your code. If you haven't already, you will soon! As practice, take a look
at the code below. It has four errors. Can you find them?

// Hello World Program

#include <LiquidCrystal.c>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2)

void setup() {

 lcd.begin(16, 2); //Command to active the LCD

 lcd.print("hello, world!);

}

void loop()

 lcd.setCursor(0, 1); // Go to 0 across and 1 down

 lcd.print("God rules");

 }

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 69

Digital Stopwatch

In this project, you will use the Arduino to create a digital stopwatch. This is the
first of many electronic devices that you can build with an Arduino Uno. Your
stopwatch will be accurate to within 1/10th of a second and feature Start, Stop,
and Reset functions, just like the one in Figure 1.

Figure 1. A digital stopwatch.

The stopwatch project has two challenges. In Challenge 1, you will add buttons,
wires, and resistors to your breadboard to control your stopwatch. In Challenge
2, you will write code to make the microcontroller keep track of time and display
this information on the XBoard's LCD.

Challenge 1: Install the Stopwatch Buttons

To begin the stopwatch project, you must add several new
components to your board, including two more buttons, two more
resistors, and four more jump wires. These components will allow
you to control the stopwatch. In this challenge, your task is to gather

these components together and install them on your breadboard. If you removed
the first button, or never installed it click here to go to the instructions for
installing and programming it.

Challenge 1: Install the Stopwatch Buttons
Collecting Your Components

The components for your stopwatch are listed below and shown in Figure 2:

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 70

Part Quantity Description

A 2 Buttons

B 2 Resistors (10,000 Ohm)

C 2 Short yellow jump wires

D 2 Flexible jump wires

Figure 2. Components for stopwatch.

Challenge 1: Install the Stopwatch Buttons
Adding the Buttons

Two buttons will be needed to control your stopwatch. The installation procedure for
each button is exactly the same: a resistor connects one side of the button and one
end of the flexible jump wire to ground, and a short orange jump wire connects the
other side of the button to power.

1. Make sure that your Arduino is not plugged into your computer, so you will
not damage any of its components.

2. Connect the buttons, two flexible jump wires, and two short orange jump
wires, and 10,000-Ohm resistors to your breadboard, as shown in Figure 3.
Connect holes F46 to F48, and F51 to F53 using switches. Connect J48 and J53
to the ground using 10K ohm resistors. (if you have large resistors use H48 and
H53.) Connect rows J46 and J51 to power using yellow jump wires.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 71

Figure 3. Buttons, resistors and jump wires installed.

Challenge 1: Install the Stopwatch Buttons
Identifying Microcontroller Pins

The loose ends of the flexible jump wires will connect the buttons to pins on the
microcontroller. In order to connect these wires properly, you will need to be able
to locate specific pins on the microcontroller. Figure 4 shows the Arduino..

Figure 4. Arduino board

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 72

Challenge 1: Install the Stopwatch Buttons
Connecting the Buttons to the Microcontroller

The buttons for your stopwatch are connected to the microcontroller by the
flexible jump wires. The button on the left connects to Port 7, and the button on
the right connects to Port 8.

Connect the jump wire from I48 to port 7 on the Arduino, and the wire from I53 to
port 8, as shown in Figure 5. NOTE: I43 should already be connected to port 6, a
switch and a 10K ohm resistor.

Figure 5. Jump wire connections on the Arduino.

Challenge 1: Install the Stopwatch Buttons
Final Hardware Check

Before moving on to the next challenge, take a few minutes to check your
hardware set-up. The following checklist will help you ensure that your
stopwatch is ready for programming.

 Buttons: Left most button pins should be in hole F41 and F42; center
button pins should be in hole F46 and F48; right button pins should be in
holes F51 and F53.

 Resistors: Left resistor should connect hole J43 to ground; center resistor
should connect hole J48 to ground; right resistor should connect hole J53
to ground.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 73

 Yellow jump wires: Left wire should connect hole A41 to power; center
wire should connect hole J46 to power; right wire should connect hole J51
to power.

 Flexible jump wires: Left wire should connect hole I43 to Port 6 on the
microcontroller; center wire should connect hole I48 to Port 7 on the
microcontroller.; right wire should connect hole I53 to Port 8 on the
microcontroller.

Challenge 2: Program the Stopwatch

Now that you have installed the buttons on your breadboard,
you can start writing code to turn your Arduino into a digital
stopwatch. First, you will learn how to work with variables.
Then, you will create loops in your code to track minutes,

seconds, and fractions of a second. Later, you will program the
microcontroller to receive input from the buttons. By the end of this unit,
you will have a working stopwatch, accurate to within 1/10th of a second.

Challenge 2: Program the Stopwatch
Working with Variables

In order to keep track of time, you will need to introduce a variable into
your code. A variable is a letter or word that can be assigned a specific
numerical value. In math class, you may have worked with variables in
equations, such as 2x = 6, or x2 = 9. Using C, you can program the
microcontroller to store one or more variables, assign specific values to
variables, change the values of variables, perform mathematical
operations with variables, and display the values of your variables on the
LCD.

Any time you want to have a variable in your code, you must declare the
variable. Declaring the variable assigns a name to it, and tells the
microcontroller what type of values the variable will have. For now, all of
your variables will be integers (i.e. whole numbers, such as 0, 1, 2, etc...).
To declare an integer variable, you will use an int statement, and to
display the variable's value on the LCD, you will use an lcd.print statement.
For example, the statement int x; declares a integer variable called x, and
the statement lcd,print(x) displays the value of x on the LCD.

C has many types of variables besides integers. Other types include char
variables, float variables, and long variables. You will learn more about

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 74

these variable types later. For now, any time you want to declare a
variable, just use an int statement.

Challenge 2: Program the Stopwatch
Declaring a Variable in Your Code

1. Open the Programming Portal and create a new code file. Save your code
file as variable.

2. Enter the following code:

// Variable Program

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // define ports

int x; // x is a variable that can be set to any number

void setup() {
 lcd.begin(16, 2); // Activate LCD as 16 across by 2 down
 x=100; // Change the value of x to 100
 lcd.print (x);
} // end setup

void loop() {
 } // end loop

3. Compile and test your new code.

Programming Challenge
Assign a different value to x in your code and reprogram the
microcontroller. What's the largest value you can assign to x? Can you
use negative numbers? Use a different name for your variable and
reprogram the microcontroller. (Hint: You can use any letter you want, or
you can use a whole word.)

Challenge 2: Program the Stopwatch
Creating a While... Loop

In order to track time with your x variable, you need to make x increase in value
over time. To do this, you will take advantage of the while loop in your code. A
loop is a programming structure that causes a certain section of code to be

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 75

repeated over and over. One common type of loop in C is the while ... loop. The
while ... loop tells the microcontroller to repeatedly
execute a segment of code while a certain condition is
met. If the while command is followed by a statement that
is always true, then the while ...loop will repeat
indefinitely. This is what the loop() function in your
program does automatically. We will make our own loop
in the next program.

1. Using the Save As command, rename your code file loop.

2. Modify your code file, as follows:

// Loop Program

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // define ports

int x; // x is a variable that can be set to any number

void setup() {
 lcd.begin(16, 2); //Activate LCD as 16 across by 2 down
 x=0; // Change the value of x to 100
 while (1==1){
 lcd.clear(); // Clean off the information on the LCD
 lcd.print (x);
 delay(100); // wait one tenth of a of a second
 x=x+1; // Make x equal to what is was before plus 1
 } // end while loop
} // end setup

void loop() {
 } // end loop

3. Compile and test your new code.

Challenge 2: Program the Stopwatch
About Logical Operators

In C, the equals sign (=) and the double equals sign (==)
have different uses. The equals sign (=) sets a variable equal to a specific value.
For example, the statement x=0 sets the value of x equal to 0. The double equals
sign (==) compares two values, and determines whether the statement is true or

While loop
While (condition){ … }
Example:
while (x<300){
 x=x+1; }

Tenths

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 76

false. For example, the statement (1==1) is always true. The statement (x==1)
could be true or false, depending on the value of x. With other statements, you
can make other comparisons, determining if one value is greater than (>), greater
than or equal to (>=), less than (<), less than or equal to (<=), or not equal to (!=)
another value. These types of symbols are called logical operators.

Challenge 2: Program the Stopwatch
Creating a Finite While... Loop

In your final stopwatch code, the variable x will represent 1/10ths of a second.
You will not want this variable to increase indefinitely; instead, you will want it to
count from 0 to 9 once every second and then reset to 0. In order to do this, you
will need to create a finite loop in your code. Right now, your while loop is tied to
a condition that is always true: (1==1). This creates an infinite loop. By tying your
while loop to a condition that can be either true or false, you can create a finite
loop. In this section, you will tie the while loop to the value of x, so that the loop
repeats when x is less than or equal to 9 and stops when x reaches 9.

1. Using the Save As command, rename your code file endwhile.

2. Modify your main function, as follows:

// EndWhile Program

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

int x;

void setup() {
 lcd.begin(16, 2);
 x=0;
 while (x<=9){ // Repeat as long as x is less than or equal to 9
 lcd.clear();
 lcd.print (x);
 delay(100);
 x=x+1;
 } // end while loop
} // end setup

void loop() {
 } // end loop

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 77

3. Reprogram the microcontroller and observe the LCD.

PROGRAMMING NOTE

The delay() statement in your while ... loop makes each cycle of the loop last
approximately 100 1/1000th (or 1/10th) of a second. This means each change
in the value of x takes about 1/10th of a second, and overall, it takes a total
about one second for x to increase from 0 to 9. (Actually, this takes a little
longer, since every line of code takes some time to execute. Later in this unit,

you will adjust the delay statement to fine tune your stopwatch.)

Programming Challenge
Change your code so that x counts from 0 to 200 on the LCD. Change
your code so that x counts from 10 to 50 on the LCD. Change your code
so that x counts from 10 to 1000, increasing by 5 each time through. Try
making x count down from 1000 to 0.

Challenge 2: Program the Stopwatch
About For... Loops

Since you will frequently want to create loops that repeat a finite number times, C
has another type of loop designed specifically for this purpose--the for ... loop.
The for ... loop repeats a section of code a specified number of times,
represented by a variable. Figure 7 shows the format for setting up a for ... loop.

Figure 7. Setting up a for ... loop.

Challenge 2: Program the Stopwatch
Adding a For... Loop to Your Code

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 78

1. Using the Save As command, rename your code file forloop.

2. Modify your code file, as follows:

// EndWhile Program

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

int x;

void setup() {
 lcd.begin(16, 2);

 for (x=0;x<=9;x++){
 lcd.clear();
 lcd.print (x);
 delay(100);

 } // end for loop
} // end setup

void loop() {
 } // end loop

3. Reprogram the microcontroller and observe the LCD.

Programming Challenge
Change your code so that the final number displayed on the LCD is larger
or smaller than 9. Next, modify your code so that x starts at 99 and
decreases to 10. (Hint: In the line setting up the for... loop, what needs to
change so that x starts at 99 and decreases each time, ending at 10?)

Challenge 2: Program the Stopwatch
Adding a For... Loop for Seconds

What you have created so far is a digital counter, capable of counting up to 9
1/10ths of a second. As a next step, you will need to declare a separate variable
to track seconds. This variable will increase by 1 every time x reaches 9. In order
to do this, you will create a new for ... loop for your seconds variable, and nest,
your existing for ...loop inside of the new loop. Since there are 60 seconds in a
minute, your seconds variable should increase from 0 to 59.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 79

1. Using the Save As command, rename your code file secondloop..

2. Enter the following code into the Editor window:

// SecondLoop Program

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

int x;
int sec=0; // Start sec with a value of 0

void setup() {
 lcd.begin(16, 2);

 for(sec=0;sec<=59;sec++){
 for (x=0;x<=9;x++){

 lcd.clear();
 lcd.print(sec); // Display seconds
 lcd.print("."); // Decimal point
 lcd.print (x); // Display tenths of seconds
 delay(100); // Wait one tenth of a second

 } // end for x loop
 } // end for sec loop
} // end setup

void loop() {
 } // end loop

3. Reprogram the microcontroller and observe the LCD.

Challenge 2: Program the Stopwatch
Adding a For... Loop for Minutes

By adding a third loop to your code, you can track minutes as well as seconds.
Just as you did for the seconds loop, you will have to declare a new variable to
track minutes, and nest the seconds loop and the x loop inside your new loop.

1. Using the Save As command, rename your code file minuteloop.

2. Modify your code file, as follows:

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 80

// MinuteLoop Program

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

int x=0;
int sec=0;
int min=0;

void setup() {
 lcd.begin(16, 2);

 for (min=0;min<=59;min++){
 for(sec=0;sec<=59;sec++){
 for (x=0;x<=9;x++){

 lcd.clear();
 lcd.print(min); // minutes
 lcd.print(":");
 lcd.print(sec); // seconds
 lcd.print(".");
 lcd.print (x); // tenths
 delay(100);

 } // end for x loop
 } // end for sec loop
 } //end for min loop
} // end setup

void loop() {

 } // end loop

3. Compile and test your new code.

Calibration Exercise
With the addition of each new line of code, you increase the amount of
time required for each cycle of your for... loops. As a result, at this stage,
your stopwatch probably is not keeping very accurate time. Fortunately,
you can easily fine tune your stopwatch by adjusting the delay statement
at the bottom of the last for... loop. Making the delay shorter will speed up

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 81

your stopwatch, and making the delay longer will slow down your
stopwatch. Test the accuracy of your stopwatch by using a wristwatch or
wall clock. Is your stopwatch fast or slow? By changing the delay
statement in your code, adjust your stopwatch for better accuracy. (Hint:
With a shorter delay, your stopwatch will run faster.)

Challenge 2: Program the Stopwatch
About the Stopwatch Buttons

Look closely at the flexible jump wires connecting the buttons to the
microcontroller. When the buttons are not pressed, Ports B4 and B5 are tied to
ground through a resistor. When the buttons are pressed, Ports B4 and B5 are
tied to power. To the microcontroller, this means that when the buttons are not
pressed, Ports B4 and B5 are LOW, and when the buttons are pressed, Ports B4
and B5 are HIGH. Table 1 summarizes this information.

Table 1. Relationship between buttons and Ports 7 and 8.

 Center Button Right Button

Not Pressed Port 7 == LOW Port 8 == LOW

Pressed Port 7 == HIGH Port 8 == HIGH

Ports on the microcontroller can be connected to input devices, such as buttons
and sensors, or output devices, such as the LCD or a speaker. In your code, you
need to specify whenever a port is going to be used as an input or an output.
This is done with a pinMode statement. For example, the statement pinMode(7,
INPUT); sets up Port 7 as an input. The statement pinMode(7, OUTPUT);
TRISB5 = OUTPUT sets up Port 7 as an output.

PROGRAMMING NOTE

The words HIGH, LOW, INPUT, and OUTPUT are shorthand for values. HIGH is equal
to 1, and LOW is equal to 0. INPUT is equal to 1, and OUTPUT is equal to 0. This
shorthand is used interchangeably in the Machine Science code examples, but it is easy
to remember. Just think: 1 = I for I nput, and 0 = O for O utput.

Challenge 2: Program the Stopwatch
Programming the Start Button

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 82

As a first step, you will program the center stopwatch button as a start button. In
order to do this, you will have to set up port 7 as an input, using a pinMode
statement. Then you will need to introduce a while... statement that holds the
microcontroller in a loop until the left button is pressed.

1. Using the Save As command, rename your code file startbutton.

2. Modify your code file, as follows:

// StartButton Program

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

int x=0;
int sec=0;
int min=0;

void setup() {
 lcd.begin(16, 2);
 pinMode(7, INPUT); // Button

 while (digitalRead(7)==0); //Wait until button press

 for (min=0;min<=59;min++){
 for(sec=0;sec<=59;sec++){
 for (x=0;x<=9;x++){

 lcd.clear();
 lcd.print(min); // minutes
 lcd.print(":");
 lcd.print(sec); // seconds
 lcd.print(".");
 lcd.print (x); // tenths
 delay(100);

 } // end for x loop
 } // end for sec loop
 } //end for min loop
} // end setup

void loop() {
 } // end loop

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 83

3. Compile and test your new code.

Challenge 2: Program the Stopwatch
Programming the Stop Button

With the left stopwatch button serving as a Start button, you are ready to
program the right stopwatch button to serve as a Stop button. This will involve
adding two new types of statements to your code--an if statement and a break
statement. An if ... statement tells the microcontroller to execute a specific piece
of code if a certain condition is met. A break statement tells the microcontroller to
immediately break out of whatever loop it is currently executing.

1. Using the Save As command, rename your code file stopbutton.

2. Modify your main function, as follows:

// StopButton Program

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

int x=0;
int sec=0;
int min=0;
int rbutton=0; // Stop button variable

void setup() {
 lcd.begin(16, 2);
 pinMode(7, INPUT); // Start - Center Button
 pinMode(8, INPUT); // Stop - Right Button

 while (digitalRead(7)==0); //Wait until button press

 for (min=0;min<=59;min++){
 for(sec=0;sec<=59;sec++){
 for (x=0;x<=9;x++){

 lcd.clear();
 lcd.print(min); // minutes
 lcd.print(":");
 lcd.print(sec); // seconds
 lcd.print(".");
 lcd.print (x); // tenths

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 84

 delay(100);
 rbutton = digitalRead(8); // If Stop button press – breakout
 if (rbutton==1) break; // Stop button- get out of x loop
 } // end for x loop
 if (rbutton==1) break; // Stop button- get out of sec loop
 } // end for sec loop
 if (rbutton==1) break; // Stop button- get out of min loop
 } //end for min loop
} // end setup

void loop() {
 } // end loop

3. Compile and test your new code.

Challenge 2: Program the Stopwatch
Adding a Reset Function

In this step, you will program the right stopwatch button to reset the stopwatch
display. To do this, you will add a while... loop and another gateway while...
statement, as well as lcd.clear() and lcd.print statements. Use the left most
button, attached to port 6 to clear the display

1. Using the Save As function, rename your code file resetbutton.

2. Modify your main function, as follows:

// ResetButton Program

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

int x=0;
int sec=0;
int min=0;
int rbutton=0; // Stop button

void setup() {
 lcd.begin(16, 2);
 pinMode(6, INPUT); // Start - Left Button
 pinMode(7, INPUT); // Start - Center Button
 pinMode(8, INPUT); // Stop - Right Button

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 85

 while(1==1){//Gateway loop

 //cbutton = digitalRead(7);// Start button = center button
 while (digitalRead(7)==0); //Wait until start button press

 for (min=0;min<=59;min++){
 for(sec=0;sec<=59;sec++){
 for (x=0;x<=9;x++){

 lcd.clear();
 lcd.print(min); // minutes
 lcd.print(":");
 lcd.print(sec); // seconds
 lcd.print(".");
 lcd.print (x); // tenths
 delay(100);
 rbutton = digitalRead(8); //Stop button
 if (rbutton==1) break;
 } // end for x loop
 if (rbutton==1) break;// Stop button- get out of sec loop
 } // end for sec loop
 if (rbutton==1) break;// Stop button- get out of min loop
 } //end for min loop

 while (digitalRead(6)==0); //wait for reset press - left button

 lcd.clear();
 lcd.print("0:0.0");

 } // end Gateway Loop
} // end setup

void loop() {
 } // end loop

3. Compile and test your new code.

Challenge 2: Program the Stopwatch
Fixing the Number Display

If you pay careful attention, you will notice an error on the stopwatch display
during the first 10 seconds of each minute single digits print instead of double
digits. For example, in the third second, your display shows 0:3.0 rather than

Stop Watch

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 86

0:03.0. To fix this problem, you need add an if statement that prints a zero, when
the number of seconds is less than 10. You will need to fix the minute display, as
well. Additionally, after the lcd.clear statement, you will need to print “0:00.0”,
instead of “0:0.0”.

1. Using the Save File button, rename your code file twodigits.c.

2. Insert the if statements in your code file, following the example below,
and fix the reset lcd.print statement.

if (min<10) lcd.print ("0");

3. Compile and test your new code.

Challenge 2: Program the Stopwatch
Finishing Touches

With a few finishing touches, your stopwatch will work even better.

1. With all of your new code, your stopwatch may have lost some accuracy.
Adjust the delay statement in the central for...loop to fine tune the watch's
accuracy.

2. Add an lcd.print statement near the top of your code file, so that the
stopwatch displays "00:00.0" before you press the Start button.

3. Using lcd_instruction(GOTO) and lcd.print statements, personalize your
stopwatch by adding text to the stopwatch display. For example, you could
put your name on Line 1 and move the time display to Line 2 of the LCD.
This link will take you to a page that explains LCD commands.

Challenge 2: Program the Stopwatch
Cleaning Up

Congratulations! You have built a working stopwatch, using
the same software and parts that professional engineers
use. Before moving on to the next unit, take a little time to
clean up your breadboard and store the stopwatch
components.

1. Remove the two flexible jump wires from the breadboard.

2. Remove the jump wire and resistor for each button.

Stopwatch +

Show your work to
the instructor for
EXTRA CREDIT.

file:///C:\Program%20Files%20(x86)\Arduino\reference\www.arduino.cc\en\Reference\LiquidCrystal.html

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 87

3. Remove the two buttons from the breadboard.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 88

Digital Thermometer

This project will transform your Atmega into a working digital thermometer. Your
thermometer will display temperature in units of Celsius and Fahrenheit, just like
the ones shown in Figure 1.

Figure 1. Digital thermometers.

Like the stopwatch project, the thermometer project has two challenges.
Challenge 1 is a hardware challenge--adding jump wires and a temperature
sensor to the breadboard. Challenge 2 is a software challenge--writing code to
make the microcontroller keep track of temperature and display this information
on the LCD.

Challenge 1: Install the Temperature Sensor

As a first step, you need to add a temperature sensor, another
resistor, and a few more jump wires to your Arduino. Be careful when
installing the temperature sensor, since it can be easily damaged if it
is oriented incorrectly. Once you have completed this challenge, you

will be ready to write code to gather temperature data from the sensor.

Challenge 1: Install the Temperature Sensor

Collecting Your Components

The components for your digital thermometer are listed below and shown in
Figure 2:

Part Quantity Description

A 1 Analog voltage temperature sensor (TMP36GT9)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 89

B 1 Short orange jump wire

C 1 Short yellow jump wire

D 1 Flexible jump wire

Figure 2. Components for the digital thermometer.

Challenge 1: Install the Temperature Sensor
Adding the Temperature Sensor

The temperature sensor is a high-precision sensor that is accurate to within +/-0.5°C,
with a range of -55°C to +125°C. The sensor has three prongs. The outer prongs
connect to power and ground via short jump wires, and the center prong connects both
to the microcontroller and to power, via a resistor.

1. Make sure that the power switch on your battery pack is in the OFF position.

2. Connect hole I31 to the ground with an orange jump wire, then connect hole
I29 to power with a yellow jump wire, as shown in Figure 3

2. Connect the flexible jump wire to the Atmega, as shown in Figure 3.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 90

Figure 3. Sensors and jump wires installed.

3. Connect the temperature sensor to the breadboard, aligning its three
pins with holes F29, F30, and F31. NOTE: Be sure to orient the flat face of
the temperature sensor as shown, away from the jumpers.

4. Connect the loose end of the flexible jump wire to Port A2 on the
microcontroller. NOTE: If you need help finding Port A2, refer to the
Arduino Quick Reference page at the end of this document.

Challenge 2: Collect Data from the Sensor

With the temperature sensor installed, you are ready to write code to
turn your Atmega into a working digital thermometer. First, you will
learn how to call an existing function that gathers data from the
temperature sensor. Then, you will write your own function to convert

Celsius temperatures into Fahrenheit temperatures.

Challenge 2: Collect Data from the Sensor
Understanding Functions

Functions are one of the most powerful tools in C. With a function, you can group
several lines of code together, give them a name, and then execute them later on
with a single line of code. Executing a function is usually referred to as calling the

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 91

function. Sometimes, functions have inputs (called arguments) and an output
(also called a return value). The input-output feature of functions is shown in
Figure 4.

Figure 4. A function with inputs (arguments) and an output (return value).

For example, let's say you wanted to create a function that adds two numbers
together. The inputs (or arguments) would be the two numbers you want to add,
the function would be a mathematical equation adding the two numbers together,
and the output (or return value) would be the result of the equation. Figure 5
illustrates how this function would work.

Figure 5. A function that adds two numbers together.

In C code, the function shown in Figure 5 would contain the statements shown in
Figure 6.

Figure 6. A C function that adds two numbers together.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 92

After a function has been defined, it can be called at any time with a single line of
code. For example, the code shown in Figure 7 would add the numbers 5 and 7
together and display the result on the LCD.

void setup(){

 Serial.begin(9600);

}

void loop() {

 int i = 2;

 int j = 3;

 int k;

 k = myMultiplyFunction(i, j); // k now contains 6

 Serial.println(k);

 delay(500);

}

int myMultiplyFunction(int x, int y){

 int result;

 result = x * y;

 return result;

}
Figure 7. A code file calling the add function.

To help get you started, a number of functions have been defined for you. In fact,
you have already been using some of these functions, without even realizing it.
The statements lcd_text, lcd_decimal, delay_ms, and delay_us are all functions
that were developed to make writing your first programs a little easier. These
functions are defined in the files called mxapi.h and mxapi.c, which you have
included at the top of all of your code files.

Challenge 2: Collect Data from the Sensor

Calling a Function in Your Code

Another function that has already been defined for you is called
temp_sensor_read. The temp_sensor_read function gathers data from the
XBoard's temperature sensor and sends back a Celsius temperature as a return
value. In this section, you will call the temp_sensor_read function and display the
return value on the XBoard's LCD.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 93

1. Open the Programming Portal and create a new code file. Save your code
file as celsius.c. (NOTE: Remember to include the .c filename extension.)

2. Enter the following code:

#include "mxapi.h"

void main(void)

{

 int temp_c=0;

 lcd_init();

 while(1==1)

 {

 temp_c=temp_sensor_read(TEMPERATURE);

 lcd_decimal(temp_c);

 delay_ms(200);

 lcd_instruction(GOTO_LINE1+0);

 }

}

3. Compile and test your new code.

Challenge 2: Collect Data from the Sensor
About Temperature Scales

The temp_sensor_read function's return value is a Celsius temperature. Celsius
is a temperature scale based on the physical properties of water: 0 degrees
Celsius (0°C) is the temperature at which water freezes, and 100°C is the
temperature at which water boils. Figure 8 shows the relationship between
Celsius and the more familiar Fahrenheit temperature scale.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 94

Figure 8. Thermometers showing Celsius and Fahrenheit temperatures.

You can convert Celsius temperatures to Fahrenheit temperatures using the
following formula, where temp_c is a Celsius temperature and temp_f is a
Fahrenheit temperature.

temp_f = ((9*temp_c)/5) + 32

For example, to convert 0°C to Fahrenheit, your calculations would go as follows:

temp_f = ((9*0)/5) + 32
temp_f = 0 + 32

temp_f = 32

Likewise, you can convert Fahrenheit to Celsius, using the following formula:

temp_c = ((temp_f - 32)*5)/9

For example, to convert 86°F to Celsius, your calculations would go as follows:

temp_c = ((86 - 32)*5)/9 temp_c = ((54)*5)/9
temp_c = (270)/9

temp_c = 30

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 95

Challenge 2: Collect Data from the Sensor
Writing a Function to Convert Celsius to Fahrenheit

Using a function of your own, you can have the microcontroller do the math to
convert Celsius temperatures into Fahrenheit temperatures. Remember that
every C function has four parts, which are explained below and shown in Figure
9:

 A name. In this case, your function will be called fahrenheit_conversion .
 Arguments. These are the inputs that you pass to the function. You will

pass one variable to your fahrenheit_conversion function--an integer called
c_temp.

 A return value. This is the output of the function--a number that your
function will return when it is called. Your function will return a Fahrenheit
temperature called f_temp.

 Contents. The contents of the function are contained in curly braces and
tell the microcontroller what to do when the function is called.

Figure 9. Setting up a function in C.

1. Using the Save As command, rename your code file fahrenheit.c.

2. Modify your code file, as follows:

#include "mxapi.h"

int farenheit_conversion(int c_temp)

{

 int f_temp=0;

 f_temp=((c_temp*9)/5)+32;

 return f_temp;

}

void main(void)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 96

{

 int temp_c=0;

 int temp_f=0;

 lcd_init();

 while(1==1)

 {

 temp_c=temp_sensor_read(TEMPERATURE);

 lcd_decimal(temp_c);

 temp_f=farenheit_conversion(temp_c);

 lcd_instruction(GOTO_LINE2+0);

 lcd_decimal(temp_f);

 delay_ms(200);

 lcd_instruction(GOTO_LINE1+0);

 }

}

3. Compile and test your new code.

Challenge 2: Collect Data from the Sensor
Finishing Touches

With a few finishing touches, your display will be easier to read.

1. Add an lcd_text statement to your code file, so that the thermometer
displays "C Temp = " before the Celsius temperature on line 1 of the LCD.

2. Using an lcd_text statement, display "F Temp = " before the Fahrenheit
temperature on line 2 of the LCD.

Challenge 2: Collect Data from the Sensor
Cleaning Up

Congratulations! You have built a digital thermometer, using the same parts and
code that professional engineers use. Before moving on to the next project, take
some time to clean up the breadboard and store the thermometer components.

1. Remove the flexible jump wire from breadboard.

2. Remove the resistor and jump wires for the temperature sensor.

3. Remove the temperature sensor.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 97

Unit 1: Making Sounds

Digitally synthesized music is everywhere. Nearly every popular song on the
radio today features tracks produced by a digital synthesizer, such as the one
shown in Figure 1. But you don't need an expensive keyboard to make digital
music--any device with a speaker and a microcontroller can produce a range of
musical melodies. In fact, you hear these digitally synthesized melodies every
day, whenever someone's cell phone rings. Inside every cell phone is a tiny
speaker, which is connected to a microcontroller. The microcontroller is
programmed to generate the ring tone melody when the phone receives a call.

Figure 1. A synthesizer keyboard (left) and a cell phone (right).

In Unit 1, you will take the first steps towards transforming your XBoard into a
digital music synthesizer. Unit 1 has two challenges. In Challenge 1, you will add
a speaker to the XBoard. In Challenge 2, you will program the speaker to make
some basic sounds.

Challenge 1: Install the Speaker

Challenge 1 is a simple hardware task--adding a speaker to the
XBoard, using a two-prong connector and two jump wires.

Challenge 1: Install the Speaker
Collecting Your Components

In order to complete this challenge, you will need the following components
(shown in Figure 2):

Part Quantity Description

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 98

A 1 Piezo-electric speaker

B 1 Jump wire (yellow)

C 1 Bent connector (two-prong)

D 1 Flexible jump wire

Figure 2. Components for Digital Music Synthesizer project.

Challenge 1: Install the Speaker
Adding the Piezo-Electric Speaker

The piezo-electric speaker should be connected to Port C2 on the microcontroller and
to ground, as shown in the video to the right and in Figure 3.

1. Using a short yellow jump wire, connect hole A49 to ground.

2. Attach a bent two-prong connector to the speaker leads.

3. Insert the bent two-prong connector into the board, in holes B48 and B49.
Make sure the black speaker lead aligns with the yellow jump wire. NOTE: You
may have to turn the two-prong connector over in order to get it to fit as shown
in Figure 3.

4. Using a flexible jump wire, connect hole A48 to Port C2 on the microcontroller
(pin 17). NOTE: If you need help finding Port C2, refer to the microcontroller pin
diagram in the Microcontroller Quick Reference document.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 99

Figure 3. Piezo-electric speaker added to the XBoard.

Challenge 2: Produce Sounds from the Speaker

Challenge 2 is a straightforward programming task--sending pulses
of electricity to the speaker to produce sounds. First, you will
generate simple clicking sounds. Then, you will write a loop to
produce a sustained tone. Finally, you will create a for... loop to

produce a tone of a finite duration.

Challenge 2: Produce Sounds from the Speaker
About the Piezo-Electric Speaker

The speaker you will use in this project is called a piezo-electric speaker. The
key component in the speaker is a piezo-electric element--a material that bends
slightly when you supply electricity to it. If the electricity is sent in pulses, the
element vibrates back and forth. Just like the movement of a saxophone reed or
a guitar string, this vibration produces audible sound waves in the air. To make
the piezo-electric element vibrate, you need to send pulses of electricity to the
speaker, alternating between 0 volts and 5 volts. Figure 4 shows how the voltage
signals make the piezo-electric element move.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 100

Figure 4. The piezoelectric element moving back and forth to create

sounds.

Challenge 2: Produce Sounds from the Speaker
Making a Click

Your first programming task is to get the speaker to make a clicking sound by
raising and then lowering the voltage on Port C2 of the microcontroller. Figure 5
shows the voltage pattern that your code should create--5 volts for 1 millisecond,
and then 0 volts for 1 millisecond.

Figure 5. Voltage pattern (with speaker above and code below).

1. Open the Programming Portal, create a new code file, and save it as
click.c.

2. Enter the following code:

#include "mxapi.h"

void main(void)

{

 TRISC2 = 0; //Sets Port as output

 RC2 = 1; //Sets Port high

 delay_us(1000); //Wait 1000 microseconds

 RC2 = 0;

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 101

 delay_us(1000);

 end();

}

3. Click the Compile Button.

4. Click the Download button.

5. Listen to the speaker. It should produce a click.

6. Press the reset button on the XBoard a few times to hear the clicking
noise.

Challenge 2: Produce Sounds from the Speaker
Producing a Sustained Tone

To make a more interesting sound, like a sustained tone, it is necessary to make
the piezo-electric element inside the speaker vibrate back and forth repeatedly.

1. Create a new file by saving your code as tone.c.

2. Change your code so that the piezo-electric element moves back and
forth repeatedly.

#include "mxapi.h"

void main(void)

{

 TRISC2 = 0;

 while(1==1) //Sets the while... loop

 {

 RC2 = 1;

 delay_us(1000);

 RC2 = 0;

 delay_us(1000);

 }

 end();

}

3. Compile and test your new code. NOTE: When you are tired of listening
to the tone, just switch off your battery pack!

Challenge 2: Produce Sounds from the Speaker
Playing Individual Tones

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 102

With tone.c, you produced a sustained tone that plays indefinitely. For this
project, it would be useful to play individual tones (tones that play for a short
period and then stop).

1. Using the Save File button, rename your code file one_tone.c.

2. Modify your code so that the tone plays for a short period and then
stops.

#include "mxapi.h"

void main(void)

{

 int x; //Declare a variable called x

 TRISC2 = 0;

 for(x=0; x<200; x++) //Sets the for.. loop

 {

 RC2 = 1;

 delay_us(1000);

 RC2 = 0;

 delay_us(1000);

 }

 end();

}

3. Compile and test your new code.

Unit 2: Making Notes and Melodies

Once you know how to make sounds from the speaker, you are ready to take the
next step: making musical notes and melodies. A musical note is just a tone with
a specific frequency and a specific duration. A melody is a sequence of different
notes. A song's melody is its central musical theme. If the song has lyrics, each
note in the melody usually corresponds to a word or a syllable in the lyrics.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 103

Figure 1. Digital devices for measuring musical frequency and duration.

Unit 2 has two challenges. In Challenge 1, you will learn to control the frequency
of the tones produced by your XBoard. In Challenge 2, you will write a function to
control both the frequency and the duration of each note, in order to streamline
the making of musical melodies.

Challenge 1: Control Frequency

A note's frequency is also referred to as its pitch. Some notes--such
as those produced by a flute or a violin--have high frequencies, while
other notes--such as those produced by a cello or a bass guitar--
have low frequencies. Even someone who doesn't know anything

about music can hear the difference between high-frequency notes and low-
frequency notes. In this challenge, you will learn how to calculate a note's
frequency and how to control the frequency of the notes produced by your
XBoard.

Challenge 1: Control Frequency
About Frequency

OK, so you can hear the difference between a high note and a low note, but how
do you calculate a note's frequency? Actually, this is very easy to do, once you
understand that the movement of the piezo-electric element is a type of wave,
like the one shown in Figure 2. Like every wave form, the movement of the
element has two important properties:

* Cycle. A cycle is a complete movement of the piezo-electric element up to 5
volts and back down to 0 volts.
* Period. Period is the amount of time required to complete one cycle.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 104

Frequency is the number of cycles that happen during a one-second period, or
simply the number of cycles per second.

Figure 2 shows the voltage sent to the XBoard's speaker over three cycles. A
cycle starts when the voltage goes to 5 volts, continues as the voltage drops
back to 0 volts, and ends just as the voltage is about to go back up to 5 volts.

Figure 2. Voltage over three cycles.

Challenge 1: Control Frequency
Calculating a Tone's Frequency

Frequency can be calculated two different ways:

frequency = 1 / period
-or-

frequency = cycles / second

Both equations produce the same result. Consider the example shown in the

figure below:

frequency = 1 / period
frequency = 1 / (0.5 seconds)
frequency = 2 cycles / second

-or-
frequency = cycles / second

frequency = (3 cycles) / (1.5 seconds)
frequency = 2 cycles / second

The most common unit of frequency is the Hertz. One cycle per second is equal
to one Hertz.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 105

1 Hertz = 1 cycle / second

Therefore, in the example shown above, the frequency is 2 Hertz.

Challenge 1: Control Frequency
Calculating a Tone's Frequency from your Code

Now that you know how frequency and period are related, it is possible to
determine the frequency of the tone your speaker will produce, just by looking at
your code. The period of the tone will be the sum of the two delays in each cycle
of your for... loop. For example, in the following code, the delays are 1,000
microseconds each:

frequency = 1 / period
frequency = 1 / (delay1 + delay2)

frequency = 1 / (1000 microseconds + 1000 microseconds)
frequency = 1 / (2000 microseconds)

frequency = 1 / (0.002 seconds)
frequency = 500 hertz

Challenge 1: Control Frequency
Playing Specific Frequencies

By adjusting the delays in your for... loop, you can program the microcontroller to
produce a tone with a specific frequency--in other words, a musical note. The
table below shows seven musical notes, together with their frequencies.

Note Frequency

G 784

F 698

E 659

D 587

C 523

B 494

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 106

A 440

The note A has a frequency of 440 cycles per second; the note B has a
frequency of 494 cycles per second; and so on.

1. Open the file one_tone.c. Using the Save File button, rename your code
file a440.c.

2. Calculate the period and the delays required to produce the note A.

3. Adjust the delays in your code to produce that note.

4. Compile and test your new code.

Challenge 1: Control Frequency
Creating a Simple Melody

When notes are put together, they form melodies. By adding multiple loops to
your code, you can create a simple melody, with one loop per note.

1. Using the Save File button, rename your code file first_song.c.

2. Calculate the period for the notes you need--for example: E, D, C, D, E.

3. Add loops to your code, and adjust the delays in each loop, to produce
the notes you want.

4. Compile and test your new code.

PROGRAMMING NOTE

You can cut and paste text in the Programming Portal, just as you would in a
normal word processing program. This feature may come in handy as you make

melodies on the XBoard. You can cut and paste however many loops you need, and
then change the delays to create different notes for your melody.

Challenge 2: Use Functions to Make

With the code that you have written so far, each tone requires many
lines of code, making it cumbersome to produce even a very simple

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 107

melody. This can be greatly streamlined by setting up a function in C to produce
each tone. As you learned in Introductory Project 3, a function is a block of code
that is given a name. Once you define the function, you can execute that block of
code whenever you need it, with a single statement. A useful feature of functions
is that you can pass one or more variables to the function, to control how the
function operates. In this Challenge, you will define a function called beep, which
will cause the speaker to generate a tone every time you call the function. You
will pass a variable to the beep function, controlling the tone's frequency.

Challenge 2: Use Functions to Make
Setting Up the Beep Function

1. Using the Save File button, rename your code file pulse_function.c.

2. Insert the following lines to your code file:

#include "mxapi.h"

void beep(int pulse)

{

 int x;

 for(x=0; x<200; x++)

 {

 RC2 = 1;

 delay_us(pulse); //Wait for pulse microseconds

 RC2 = 0;

 delay_us(pulse);

 }

}

3. Now, in your main function, any time you want to produce a tone, you
just have to call the beep function, as shown below:

void main(void)

{

 TRISC2 = 0;

 beep(759); //Calls a beep function

 beep(852);

 beep(956);

 beep(852);

 beep(759);

 end();

}

4. Compile and test your new code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 108

Challenge 2: Use Functions to Make
Calculating Pulse Length from Frequency

It's much easier not having to write all the code for each note, but it would be
even better if your program could take care of calculating the pulse length
required for a specific frequency. That way, you could just enter frequencies and
get the correct tone. In the next step, you will modify your function to convert
frequencies to pulses automatically.

The calculation is accomplished as follows:

frequency = 1 / period
period * frequency = 1

period (in seconds) = 1 / frequency
period (in microseconds) = 1000000 * (1 / frequency)

period (in microseconds) = 1000000 / frequency
pulse (in microseconds) = period / 2

Challenge 2: Use Functions to Make
Passing a Frequency Variable to Your Beep Function

By incorporating the pulse calculations into your beep function, you can pass
frequency directly to the function. In order to do this, you will need to introduce a
new type of variable--a long variable, which can store larger numbers than an int
variable. A long variable is needed in this case, because period and pulse are
measured in microseconds and can reach values up to 1,000,000. An int variable
can only go up to 32,768, whereas long variables can store values higher than
2,000,000,000 (2 billion).

1. Using the Save File button, rename your code file freq_function.c.

2. Enter the following code:

#include "mxapi.h"

void beep(int frequency)

{

 long period; //declare variable called period

 long pulse; //declare variable called pulse

 int x;

 period = 1000000 / frequency;

 pulse = (period / 2);

 for(x=0; x<200; x++)

 {

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 109

 RC2 = 1;

 delay_us(pulse);

 RC2 = 0;

 delay_us(pulse);

 }

}

3. Now in your main function, insert the following lines. Note that you can
pass a specific frequency to the beep function, each time you call it.
void main(void)

{

 TRISC2 = 0;

 beep(523);

 beep(587);

 beep(659);

 beep(698);

 beep(784);

 end();

}

4. Compile and test your new code.

Challenge 2: Use Functions to Make
Using the Function to Control Duration

In music, controlling a note's duration is as important as controlling its frequency.
By adding another variable to the beep function, you can control the number of
times your for... loop repeats each time the beep function is called.

1. Using the Save As command, rename your code file cycles_function.c.

2. Add a new variable, called cycles, to your beep function, as follows:

void beep(int frequency, int cycles)

3. Use the variable to control how many times the for... loop repeats, as
follows:

for(x=0; x<cycles; x++)

4. Add the number of cycles each time you call the beep function, as shown
below.

 beep(400, 200);

 beep(440, 400);

 beep(494, 200);

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 110

 beep(494, 400);

 beep(523, 200);

5. Compile and test your new code.

Challenge 2: Use Functions to Make
Calculating Cycles from Duration

If you listen closely to two notes with the same number of cycles but different
frequencies, you will notice that the higher note has a shorter duration than the
lower note. The reason for this is simple: higher frequencies have shorter
periods. Two hundred cycles of a short period takes less time to complete than
200 cycles of a longer period.

To address this problem, it is necessary to adjust the number of cycles
depending on the frequency of the note. This adjustment can be calculated using
the following facts: 1) the duration of a note is equal to the number of cycles
multiplied by the period of each cycle; and 2) the period of each cycle (in
milliseconds) is equal to 1000 divided by the note's frequency.

duration = cycles * period
duration = cycles * (1000 / frequency)
frequency * duration = cycles * 1000
cycles = duration * frequency / 1000

Challenge 2: Use Functions to Make
Fine Tuning the Duration

By incorporating the cycles calculations into the beep function, you can fine tune
the duration of each note.

1. Using the Save As command, rename your code file full_function.c.

2. In your beep function, replace the cycles variable with a new variable,
called duration, as follows:

void beep(int frequency, int duration)

3. In your beep function, initialize a new variable, called cycles, just below
the statements initializing your period, pulse, and x variables, as shown
below. (REMEMBER: All statements initializing variables always must be at
the top of your function.)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 111

void beep (int frequency, int duration)

{

 long period;

 long pulse;

 int x;

 long cycles;

4. Below the statements that calculate pulse from frequency, use the
duration and frequency variables to compute the number of cycles--i.e., the
number of times the for... loop repeats each time the beep is called, as
follows:

period = 1000000 / frequency;

pulse = period / 2;

cycles = duration * (frequency / 1000.00);

for(x=0; x<=cycles; x++)

5. In your main function, each time the beep function is called, replace the
number of cycles with the duration of the note (in milliseconds).

beep(440,100);

6. Compile and test your new code.

PROGRAMMING NOTE

In C, when you divide one integer by another, any fractional remainder is
automatically left off. For example, if you divide 2500 by 1000, you would expect to get
2.5, but in C, the 0.5 fractional remainder is left off, leaving 2. If you don't want this to

happen, you have to change your code slightly. Notice that in the beep function above,
you divide frequency by 1000.00. This indicates that you want to keep the fractional

remainder, allowing more precise computations.

Challenge 2: Use Functions to Make
Making a Melody with the Beep Function

With your new, fine-tuned beep function, you can make melodies much more
accurately and efficiently than you could when you were coding each note by
hand.

1. Using the Save As command, rename your code file new_song.c.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 112

2. In your main function, use the beep function to create the following
melody:

3. Compile and test your new code.

Challenge 2: Use Functions to Make
About the Musical Scale

In Western music, the complete range of musical tones is divided into groups of
seven full tones --A, B, C, D, E, F, G--and five half tones, which fall in between
the full tones. Each half tone has two names--for example, the half tone between
A and B is called A Sharp or B Flat. The four remaining half tones are called C
Sharp/D Flat, D Sharp/E Flat, F Sharp/G Flat, and G Sharp/A Flat. A complete
set of whole tones and half tones is called an octave. Two notes that are exactly
an octave apart always sound fundamentally similar and have the same name,
while all of the notes in between sound distinctly different.

The sharps and flats may seem confusing, but just remember that each is an
individual note with two different names. For example, C Sharp and D Flat have
the exact same frequency. On a piano keyboard, the sharps and flats are the
black keys, as shown in Figure 3 below.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 113

Figure 3. Piano keyboard with notes marked.

Challenge 2: Use Functions to Make
Using Define Statements for Musical Frequencies

The table below presents a matrix of notes and frequencies, grouped into
octaves. The octaves shown shaded in gray are those most easily produced by
the XBoard's speaker. A wide range of melodies can be written using these
tones. Notice that the frequency of a note in one octave is twice the frequency of
the corresponding note in the previous octave, and half the frequency of the
corresponding note in the next octave.

The beep function gives you complete control over each note's frequency.
However, when making melodies, you don't need to produce every possible
frequency. You need only those frequencies that are found in music. With define
statements, you can store these commonly used frequencies, to make it easier to
create songs. That way, when you call your beep function, you won't have to look
up the note's frequency. You can just type the note by name.

1. Using the Save As command, rename your code file new_song2.c.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 114

2. For each frequency shaded in gray in the frequency table above, add a
define statement to your code. Include a number to show which column
(i.e. octave) the tone is in. Use two separate define statements for each
sharp and flat note, substituting the letter S for the sharp and the letter F
for flat. For example, the first seven define statements would appear as
follows:

#define C2 65

#define C2S 69

#define D2F 69

#define D2 73

#define D2S 78

#define E2F 78

#define E2 82

(NOTE: Be sure to insert your define statements right after your include
statements.)

3. In your main function (for "Mary Had a Little Lamb"), replace the
frequency numbers with the name of each note. For example, the first four
notes would appear as follows:

beep(B5,200);

beep(A5,200);

beep(G5,200);

beep(A5,200);

4. Compile and test your new code.

Challenge 2: Use Functions to Make
About Note Durations

A musician can choose to perform a song slowly or quickly, and this decision
affects the exact duration of every note in the song. Therefore, it is impossible to
create a fixed matrix of exact note durations. However, the relationship between
the duration of the longer notes and the duration of the shorter notes in a song
never changes, no matter how quickly or slowly the song is performed. This
information can be captured in define statements to streamline song writing.

In Western music, the longest note is called a whole note. Other note durations
are related to one another by factors of two, as shown below.

1 Whole Note = 2 Half Notes

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 115

1 Half Note = 2 Quarter Notes

1 Quarter Note = 2 Eighth Notes

1 Eighth Note = 2 Sixteenth Notes

1 Sixteenth Note = 2 Thirty-Second Notes

There are also dotted notes, each of which is 50% longer than the next shortest
note. (You will learn why they are called dotted notes in the next section.) These
are shown below.

1 Dotted Whole Note = 3 Half Notes

1 Dotted Half Note = 3 Quarter Notes

1 Dotted Quarter Note = 3 Eighth Notes

1 Dotted Eighth Note = 3 Sixteenth Notes

1 Dotted Sixteenth
Note

= 3 Thirty-Second Notes

Challenge 2: Use Functions to Make
Using Define Statements for Note Durations

Since note durations have fixed relationships to one another, you can use define
statements to specify the exact duration (in milliseconds) of one type of note, and
then define the others with respect to the first.

1. Using the Save As command, rename your code file new_song3.c.

2. Add a define statement to your code for each type of note, starting with
the 16th note, as shown below:

#define sixtnote 50 //Defines 16th note as 50 milliseconds

#define eighnote 2*sixtnote

#define edotnote 3*sixtnote

#define quarnote 2*eighnote

#define qdotnote 3*eighnote

#define halfnote 2*quarnote

#define hdotnote 3*quarnote

#define wholnote 2*halfnote

#define wdotnote 3*halfnote

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 116

3. In your main function (for the song "Mary Had a Little Lamb"), replace
the duration numbers with the name of each note. For example, the first
four notes would appear as follows:

beep(B5,quarnote);

beep(A5,quarnote);

beep(G5,quarnote);

beep(A5,quarnote);

4. Compile and test your new code.

Unit 3: Musical Notation and RTTTL

By this point, you have all the tools that you need to produce some more
sophisticated melodies, like the ones that you hear whenever someone's cell
phone rings. Fortunately, there is an almost limitless supply of melodies available
on the Internet. Two common formats for melodies are musical notation--a set of
symbols used by composers and musicians to represent the frequency and
duration of the notes in a song--and Ring Tone Text Transfer Language
(RTTTL)--a simple text-based format developed by Nokia to represent cell phone
ring tone melodies.

Figure 1. Musical notation (left) and RTTTL (right).

Unit 3 has two challenges. In Challenge 1, you will learn to read musical notation
and program any melody you want. In Challenge 2, you will learn to understand
RTTTL and use RTTTL code to program the XBoard--creating the exact same
ring tones that people download for their cell phones!

Challenge 1: Translate Musical Notation into C

All musicians learn to read musical notation, no matter what
instrument they play. If you can learn to read musical notation, you
can program the XBoard to play virtually any melody you can find. In
this challenge, you will learn how to translate musical notation--

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 117

readily available on the Internet for most popular and classical music--into C
code.

Challenge 1: Translate Musical Notation into C
About the Staff Lines

In musical notation, the notes in a song are represented by symbols, which
appear on horizontal lines, called staff lines. Note symbols are placed either on
or between the lines, as shown in Figure 2. A note's vertical position indicates its
frequency, with higher frequency notes appearing higher on the staff lines. For
example, the note G4 appears higher on the staff lines than the note E4.

Figure 2. Staff lines with musical notation.

In sheet music, sharps and flats are indicated by special markings that
are placed just to the left of the note symbol, shown in Figure 3. The symbol for a
sharp looks like the # character, and the symbol for a flat looks like a
lowercase b.

Figure 3. C sharp (left) and A flat (right).

When you see a symbol for a sharp, you have to make the note one half tone
higher. For example, in Figure 3, C (C5) would become C sharp (C5S). When
you see a symbol for a flat, you have to make the note one half tone lower. In
Figure 3, A (A4) would become A flat or (A4F).

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 118

Challenge 1: Translate Musical Notation into C
About Note Shapes

In musical notation, the shape of a note indicates its duration, as shown in Figure
4.

Figure 4. Standard note and rest notations.

A whole note is represented by a small oval shape. A half note is a slightly
smaller oval shape with a short vertical line rising on the right side. A quarter note
looks like a half note with the oval filled in. Eighth notes and the sixteenth notes
are identical to quarter notes, except for one or two small "flags" attached to the
vertical line.

A rest is a point in a song where no note is played. Rests can be introduced in
your C code with the delay_ms command, which will pause the song for a period
measured in milliseconds. You can use your note duration define statements to
control the duration of the rest. For example, an eighth note rest would be
represented as follows:

delay_ms(eighnote); //This inserts a rest for the duration of an

eighth note

Challenge 1: Translate Musical Notation into C
Translating Sheet Music

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 119

There are a few more quirks in sheet music that can be a little confusing. For one
thing, notes are often grouped together according to the rhythm of the song. For
example, in the song shown in Figure 5, the notes are in groups of four, each
representing a beat in the song. The grouping changes the look of each note
slightly. All of the notes in Figure 5 are sixteenth notes.

Another important thing to remember is that, once a note is marked with a sharp
or flat symbol, it remains sharp or flat until the end of the measure, which is
marked with a thin vertical line. A measure in a song is a group of beats. The
song shown in Figure 5 has four beats to the measure.

Figure 5. Sample musical notation.

Challenge 1: Translate Musical Notation into C
Printing a Music Reference Sheet

In the remainder of this unit, you will be asked to program the microcontroller to
produce songs, using only musical notation as your guide. In working on these
challenges, it may be useful to have printed reference sheet with a summary of
what you have just learned about musical notation.

1. Click here to open the reference sheet in PDF format. You will need the
Acrobat Reader from Adobe to view the PDF.

2. Select the Print option in the Acrobat Reader to print this page.

Challenge 1: Translate Musical Notation into C
Making a Hip Hop Song

http://www.machinescience.org/02/editor/data/files/MusicReferenceSheet.pdf
http://www.adobe.com/products/acrobat/readstep2.html

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 120

1. Using the Save As command, rename your code file new_song4.c.

2. Translate the following sheet music into C code. All notes are 16th notes.
When two notes are tied together (by a horizontal parentheses), they
should be treated as one eighth note.

3. Compile and test your new code.

Challenge 1: Translate Musical Notation into C
Making a TV Theme Song

1. Program the XBoard to play the following melody:

2. Compile and test your new code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 121

Challenge 1: Translate Musical Notation into C
Making a Movie Theme Song

1. Program the XBoard to play the following melodies, placing the second
line of notes after the first:

2. Compile and test your new code.

Challenge 1: Translate Musical Notation into C
Making Another Theme Song

1. Program the XBoard to play the following melodies, placing the notes on
the second line after the notes on the first line:

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 122

2. Compile and test your new code.

Challenge 1: Translate Musical Notation into C
Completing a Song

1. Program the XBoard to play the following six notes:

beep(A5,quarnote);

beep(A5,quarnote);

beep(B5,halfnote);

beep(A5,halfnote);

beep(D6,halfnote);

beep(C6S,wholnote);

2. Compile and test your new code.

Challenge 2: Translate RTTTL into C

Nokia developed RTTTL to allow customers to easily download new
ring tones for their cell phones. Like musical notation, RTTTL format
ring tones are readily available on the Internet. In Challenge 2, you
will learn how to translate RTTTL into C code that can be played on

your XBoard.

Challenge 2: Translate RTTTL into C
About RTTTL

In many ways, RTTTL is very similar to the C code that you have written to
encode melodies on the microcontroller. For every note in a melody, RTTTL
stores frequency and duration information. Note frequencies are represented by
the letters A to G, coupled with numbers representing the different octaves, just
as you have done in your C code. In RTTTL, lowercase letters are used instead
of uppercase letters, and sharp notes are marked with the "#" symbol, instead of

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 123

the letter "S." Also, when a sharp is indicated, the "#" symbol appears before the
octave number, not after. The table below shows these differences.

Note Frequency C Code RTTTL

G 784 G5 g5

F sharp/G flat 740 F5S f#5

F 698 F5 f5

E 659 E5 e5

D sharp/E flat 622 D5S d#5

D 587 D5 d5

C sharp/D flat 554 C5S c#5

C 523 C5 c5

Note durations in RTTTL are represented by numbers, with 1 corresponding to a
whole note, 2 corresponding to a half note, 4 corresponding to a quarter note,
and so on. To represent a dotted note, RTTTL adds a "." to the note symbol. The
table below shows these differences.

Note C Code RTTTL

Dotted Whole Note wdotnote 1 .

Whole Note wholnote 1

Dotted Half Note hdotnote 2 .

Half Note halfnote 2

Dotted Quarter Note qdotnote 4 .

Quarter Note quarnote 4

Dotted Eighth Note edotnote 8 .

Eighth Note eighnote 8

Dotted Sixteenth Note sdotnote 16 .

Sixteenth Note sixtnote 16

Thirty-Second Note thirnote 32

In RTTTL, the elements of the duration and frequency information appear in a
specific sequence, but they are not separated by commas (as they are in your C
code). Figure 5 shows the RTTTL sequence.

Figure 5. RTTTL data sequence.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 124

Commas are used to separate the notes in a melody. Figure 6 shows a simple
seven-note melody in RTTTL format.

Figure 6. Simple melody in RTTTL format.

Rests, or pauses, in RTTTL melodies are represented with the letter "p". For
example, a half note rest would be represented with 2p, a quarter note rest would
be represented with 4p, and so on.

Challenge 2: Translate RTTTL into C
Translating RTTTL

1. Program the microcontroller to play the seven notes show in Figure 6.

2. Complete the melody, using the RTTTL shown below:

2c5, 1f5, 2g.5, 8g#5, 8a#5, 1g#5, 2c.5, 4c5, 2f.5, 4g5, 4g#5, 4c5, 8g#.5, 8c.5,
8c6, 1a#.5, 2c5, 2f.5, 4g5, 4g#.5, 8f5, 4c.6, 8g#5, 1f6, 2f5, 8g#.5, 8g.5, 8f5,
2c6, 8c.6, 8g#.5, 8f5, 2c5, 8c.5, 8c.5, 8c5, 2f5, 8f.5, 8f.5, 8f5, 2f5

3. Compile and test your new code.

Challenge 2: Translate RTTTL into C
About RTTTL Default Settings

Translating RTTTL songs into C code is simple, once you understand the
differences in the way note frequencies and durations are represented. However,
the designers of RTTTL often use a memory-saving measure that makes it
slightly more complicated to translate RTTTL ring tones into C: they define
default settings for note durations and octaves at the start of each melody. That
way, if any note in a melody is the default duration or in the default octave, the
duration and/or octave number do not need to be set for that note. Figure 7
shows how this works.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 125

Figure 7. A simple RTTTL melody with default settings.

Challenge 2: Translate RTTTL into C
Translating RTTTL with Defaults

1. Translate the following RTTTL ring tone into C. (REMEMBER: The "p"
represents a rest, or pause, in the music):

d=4,o=5,b=125: c, c, g, g, 8a, 8b, 8c6, 8a, g, p, f, f, e,

e, d, d, c

2. Compile and test your new code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 126

Unit 1: Making Lights and Sounds

Tabletop and handheld electronic games have been around since the 1970s. In
the early days, most games were pretty simple; no color LCD screens, 3D
graphics, or multiplayer networking! One of the most popular games challenged
players to watch a sequence of lights and tones, and then reproduce that
sequence by pressing lighted buttons. With each turn, the sequence grew longer
and faster. The game, called Simon, was a huge hit, and it is still being sold
today. Figure 1 shows the original Simon, together with an updated version,
called Simon2.

Figure 1. Original Simon (left) and Simon2 (right).

In Unit 1, you will take the first steps toward building a Simon-like memory game
on your XBoard. Unit 1 has three challenges. In Challenge 1, you will add four
light emitting diodes (LEDs), four buttons, and a speaker to the board. In
Challenge 2, you will learn to light the LEDs and produce tones from the speaker.
And in Challenge 3, you will program the buttons to control the LEDs and the
speaker.

Challenge 1: Add the Hardware

Challenge 1 is a hardware task--adding the LEDs, buttons, and
speaker to the breadboard. Since you will need to have easy access
to the buttons in order to play the finished game, the arrangement of
these components is very important. Extra jump wires are used so

that the connections to the chip do not interfere with game play.

Challenge 1: Add the Hardware
Collecting Your Components

In order to complete this unit, you will need the following components (shown in
Figure 2):

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 127

Part Quantity Description

A 4 LEDs (1 yellow, 1 red, 1 orange, and 1 green)

B 4 Button switches

C 4 Resistors (1,000 Ohm)

D 4 Resistors (10,000 Ohm)

E 14 Jump wires (8 white, 3 orange, and 2 yellow)

F 1 Piezo-electric speaker

G 1 Bent connector (two-prong)

H 8 Flexible jump wires (not shown)

Figure 2. Memory game components.

Challenge 1: Add the Hardware
Removing the LCD

The components for this project take up quite a lot of space on the right side of
the breadboard. To make room, it is helpful to remove the LCD and some of the
jump wires underneath.

1. Remove the LCD from the board.

2. Remove the orange wires connecting holes J28 and J30 to ground, the
orange wire connecting hole J24 to hole J27, and the yellow wire
connecting hole J29 to power, as shown in Figure 3.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 128

Figure 3. Removing the jump wires under the LCD.

3. Be sure to leave in place the jump wires connecting hole J15 to power
and hole J16 to ground.

Challenge 1: Add the Hardware
About LEDs

Light emitting diodes (LEDs) are like tiny light bulbs that emit light when
electricity is supplied. Unlike a conventional incandescent light bulb, every LED
has a specific polarity, meaning one of its two pins is designed to connect to
power and the other pin is designed to connect to ground. A tiny flat segment on
the round rim of the LED's circular base marks the ground pin. The power pin is
typically longer than the ground pin, but this is an unreliable indicator, since the
pins may be trimmed during installation. Figure 4 shows these distinguishing
features.

Figure 4. Power pin and ground pin on LEDs.

Challenge 1: Add the Hardware
Adding the LEDs

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 129

The game requires four LEDs: one yellow, one red, one orange, and one green.
These are inserted into the board with the power pin on the right and the ground
pin on the left. Each LED is connected to power by a 1,000 Ohm resistor.

1. Insert the four LEDs into the board, as shown in Figure 5. The yellow
LED should go in holes I48 and I49; the red LED should go in holes I44 and
I45; the orange LED should go in holes B44 and B45; and the green LED
should go in holes B48 and B49. (Note: Be sure the flat edge of each LED is
facing toward the microcontroller. You may have to trim the pins on each
LED to get it to sit securely on the board.)

2. Using four 1,000 Ohm resistors, connect holes J49, J45, A45, and A49 to
power. (Note: You may need to trim the resistors to get them to fit neatly.)

Figure 5. Adding the LEDs.

Challenge 1: Add the Hardware
Adding the Buttons

In the original Simon game, the buttons themselves light up. In your XBoard,
each LED will have a button next to it. Pressing that button will light the LED.

1. Insert four buttons into the board, as shown in Figure 6. The button for
the yellow LED should go in holes I51 and I53; the button for red LED
should go in holes I40 and I42; the button for the orange LED should go in
holes B40 and B42; and the button for the green LED should go in holes
B51 and B53.

2. Using four 10,000-Ohm resistors, connect hole J53, J42, A42, and A53 to
power. (Note: You may need to trim the resistors to get them to fit neatly.)

3. Using orange jump wires, connect holes J40 and J51 to ground.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 130

4. Using yellow jump wires, connect holes A40 and A51 to ground.

Figure 6. Adding the buttons.

Challenge 1: Add the Hardware
Adding the Speaker

The red lead on the speaker connects to Port D2 on the microcontroller, and the
dark lead connects to ground, via an orange jump wire and a two-prong bent
connector.

1. Using an orange jump wire, connect hole J27 to ground.

2. Insert the two-prong bent connector into holes I26 and I27.

3. Connect the speaker to the bent connector, making sure to align the
black lead with the jump wire connecting to ground, as shown in Figure 7.

Figure 7. Installing the speaker.

Challenge 1: Add the Hardware
Adding Extra Jump Wires

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 131

At this stage, you could connect your LEDs and buttons directly to the
microcontroller, using flexible jump wires. But the resulting tangle of jump wires
might get in a player's way during a game. Using the white jump wires, you can
clear some space around the LEDs and buttons, so that the buttons will be easier
for players to reach.

1. For the LEDs, use white jump wires to connect hole F48 to hole F57, hole
F44 to hole F35, hole E44 to hole E35, and hole E48 to hole E57.

2. For the buttons, use white jump wires to connect hole G53 to hole G62,
hole G42 to hole G33, hole D42 to hole D33, and hole D53 to hole D62.

Figure 8. Adding the white jump wires.

Challenge 1: Add the Hardware
Making Connections to the Chip

The last step is to connect the ends of your white jump wires to the
microcontroller, using flexible jump wires. The LEDs will connect to Ports B0 to
B3, and the buttons will connect to Ports B4 to B7. Be careful in this step not to
mix up the jump wires, as sorting them out later may be difficult.

1. For the LEDs, use flexible jump wires to connect hole H57 (yellow LED)
to Port B0, hole H35 (red LED) to Port B1, hole C35 (orange LED) to Port B2,
and hole C57 (green LED) to Port B3.

2. For the buttons, use flexible jump wires to connect hole H62 (yellow LED
button) to Port B4, hole H33 (red LED button) to Port B5, hole C33 (orange
LED button) to Port B6, and hole C62 (green LED button) to Port B7.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 132

Figure 9. Connecting the LEDs and buttons to the microcontroller.

Challenge 2: Control the LEDs and Speaker

With your hardware all installed, you are ready to start writing code to
control the various input and output devices on your board. You will
learn how to turn the LEDs on and off, produce sounds from the
speaker, and collect input from the buttons.

Challenge 2: Control the LEDs and Speaker
Turning an LED On and Off

Each of the LEDs is connected to power by a 1,000 Ohm resistor and to the
microcontroller by a flexible jump wire. To light the LED, you must send a value
of 0 to pin connected to the ground side of the LED. This lowers the voltage at
the LED's ground pin, causing the LED to light. To turn off the LED, you simply
send a value of 1 to the same pin. This equalizes the voltage on either size of the
LED, stopping the flow of current.
1. Create a new code file and save it as one_led.c.
2. Enter the following code:

#include "mxapi.h"

void main(void)

{

 TRISB0 = 0; //Set up Port B0 as an output

 RB0 = 0; //Set Port B0 low

 delay_ms(1000); //Wait 1000 milliseconds

 RB0 = 1; //Set Port B0 high

 end(); //End program

}

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 133

3. Compile and test your new code.

Challenge 2: Control the LEDs and Speaker
Light All Four LEDs

Lighting the rest of the LEDs is simple. Just set up Ports B1, B2, and B3 as
output pins, and then use the code in the previous step to light each LED.

1. Rename your code file it as four_leds.c.

2. Enter the following code:

#include "mxapi.h"

void main(void)

{

 TRISB0 = 0;

 TRISB1 = 0;

 TRISB2 = 0;

 TRISB3 = 0;

 RB0 = 0;

 RB1 = 0;

 RB2 = 0;

 RB3 = 0;

 delay_ms(1000);

 RB0 = 1;

 RB1 = 0;

 delay_ms(1000);

 RB1 = 1;

 RB2 = 0;

 delay_ms(1000);

 RB2 = 1;

 RB3 = 0;

 delay_ms(1000);

 RB3 = 1;

 end();

}

3. Compile and test your new code.

Challenge 2: Control the LEDs and Speaker
Using Define Statements

With four LEDs, it can be difficult to keep track of which LED is connected to
which microcontroller pin. Carefully worded define statements can help avoid any
confusion.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 134

1. Rename your code file it as led_defines.c.

2. Between your include statements and your main function, enter the
following code:

#include "mxapi.h"

#define Y_LED RB0

#define R_LED RB1

#define O_LED RB2

#define G_LED RB3

3. Change the statements turning your LEDs on and off to make use of your
new define statements.

4. Compile and test your new code.

Challenge 2: Control the LEDs and Speaker
About the Tone Function

If you have already completed the Music Synthesizer project, you have written a
function, called beep, to make sounds from the speaker. The code library also
includes a function, called tone, which is equivalent in many respects to the beep
function. You pass two values to the tone function. The first indicates the desired
frequency, in Hertz, of the tone produced, and the second indicates its duration,
in milliseconds. To make life easier, the code library also includes a number of
pre-defined note frequencies, as shown in Figure 10.

Figure 10. Pre-defined note frequencies.

In addition, the code library has a number of pre-defined note durations, as
shown in Figure 11.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 135

Figure 11. Pre-defined note durations.

Therefore, when calling the tone function, you can refer to notes by name, as
shown in Figure 12. The first argument passed to the function indicates the
frequency of each note (B5 = 988 Hz, A5 = 880 Hz, and G5 = 784 Hz), and the
second argument indicates the duration (halfnote = 640 ms).

tone(B5,halfnote);

tone(A5,halfnote);

tone(G5,halfnote);

tone(A5,halfnote);

Figure 12. Calling the tone function.

Challenge 2: Control the LEDs and Speaker
Combining Lights and Sounds

Now that you know how to produce sounds from the speaker, you can associate
a tone with each LED, just like in the original Simon game.

1. Rename your code file tone_light.c.

2. In your main function, replace each of the delay statements with
statements calling the tone function, as shown below:

Y_LED = 0;

tone(C5,halfnote);

Y_LED = 1;

R_LED = 0;

tone(D5,halfnote);

R_LED = 1;

O_LED = 0;

tone(E5,halfnote);

O_LED = 1;

G_LED = 0;

tone(F5,halfnote);

G_LED = 1;

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 136

3. Compile and test your new code.

Challenge 2: Control the LEDs and Speaker
Write a Function to Control the LEDs and Speaker

Since the memory game involves frequently lighting the LEDs and producing
tones, it is useful at this stage to write a function that performs these actions
each time it is called. The function will be called light, and you will pass a variable
to it, called color. The value of color will determine which LED lights up (0 for
yellow, 1 for red, 2 for orange, and 3 for green).

1. Rename your code file light_function.c.

2. Above your main function, write a function called light, as shown below:

#include "mxapi.h"

void light(char color)

{

 if(color==0)

 {

 Y_LED=0;

 tone(C5,halfnote);

 Y_LED=1;

 }

 if(color==1)

 {

 R_LED=0;

 tone(D5,halfnote);

 R_LED=1;

 }

 if(color==2)

 {

 O_LED=0;

 tone(E5,halfnote);

 O_LED=1;

 }

 if(color==3)

 {

 G_LED=0;

 tone(F5,halfnote);

 G_LED=1;

 }

}

3. Now, in your main function, call your light function, as shown below:

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 137

void main(void)

{

 TRISB0 = 0;

 TRISB1 = 0;

 TRISB2 = 0;

 TRISB3 = 0;

 light(0);

 light(1);

 light(2);

 light(3);

 end();

}

4. Compile and test your new code.

Challenge 3: Use the Buttons

In this challenge, you will program the microcontroller to call the light
function whenever a button is pressed.

Challenge 3: Use the Buttons
About the Buttons

The buttons are connected to Ports B4 to B7 on the microcontroller. As with the
reset button, the voltage at the pin connecting the button to the microcontroller is
held high (5 volts) by the 10,000 Ohm resistor. Whenever one of the buttons is
pressed, a connection to ground is made, and the voltage at the pin immediately
goes low (0 volts). Figure 13 shows the values at each button in the pressed and
unpressed states.

Figure 13. Values at Ports B4 to B7 when buttons are pressed and not

pressed.

Challenge 3: Use the Buttons
Linking the Buttons and the LEDs

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 138

You want the LED next to each button to light whenever that button is pressed.
To do this, you need a series of if"¦else if"¦ statements that call the light function
whenever the voltage at the pin conected to the button goes low.

1. Rename your code file button_check.c.

2. To simplify coding, add the following define statements to your code:

#define Y_BUTTON RB4

#define R_BUTTON RB5

#define O_BUTTON RB6

#define G_BUTTON RB7

3. In your main function, add the following TRIS statements to set up the
button pins as inputs:

TRISB4 = 1;

TRISB5 = 1;

TRISB6 = 1;

TRISB7 = 1;

4. After the TRIS statements, replace the contents of your main function
with a while"¦ loop that contains a series of if"¦ statements to monitor the
buttons, as follows:

while(1==1)

{

 if(Y_BUTTON==0)

 {

 light(0);

 }

 else if(R_BUTTON==0)

 {

 light(1);

 }

 else if(O_BUTTON==0)

 {

 light(2);

 }

 else if(G_BUTTON==0)

 {

 light(3);

 }

 delay_ms(100);

}

5. Compile and test your new code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 139

Unit 2: Programming the Game Play

Now that you know how to control the LEDs, the speaker, and the buttons, it"s
time to start programming the game play. You want your game to generate a
random sequence of lights and sounds for the player to duplicate. The sequence
should expand with each turn, starting with one light/tone, then two, then three,
and so on. Notably, in each turn, only the last light/tone is random; the others are
the same as in the previous turn. The animation in Figure 1 shows one such
sequence: green, then green-blue, then green-blue-yellow, then green-blue-
yellow-red.

Figure 1. An expanding sequence of lights.

After each sequence is presented, the player must correctly duplicate the
sequence by pressing the corresponding buttons. If one incorrect button is
pressed, the player loses!

Challenge 1: Generate a Random Array

In this challenge, you will program the microcontroller to produce the
random sequence of lights and tones needed for game play. The
sequence will be stored in an array.

Challenge 1: Generate a Random Array
About Arrays

An array is an ordered list of two or more values that is assigned a specific name.
To introduce an array into your code, you need to declare what types of values
the array will store (e.g., char or int values), give the array a name, and indicate
how many values are stored in the array. Figure 2 shows how to set up the array
for this project. This array, called pattern, and can store 11 char values.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 140

Figure 2. Setting up the pattern array.

When you first declare your array, all of its values are set to 0 by default. If you
want, you can specify different values in the statement declaring the array, as
shown in Figure 3.

Figure 3. Setting a specific value in the pattern array.

You can refer to any individual value in your array by specifying its position.
Note: The first position in an array is position 0, not 1. You can specify the
position with a number or with a variable, as shown in Figure 4.

Figure 4. Referring to individual values in the pattern array.

Challenge 1: Generate a Random Array
Passing Values from an Array to the Light Function

In this step, you will declare your array and then use it to pass values to the light
function, generating an expanding sequence of lights and tones. To do this, you
will also need two new variables, called x and count.

1. Rename your code file game_array.c.

2. Between your include statements and your define statements, add two
new lines of code: one to declare your x variable and the other to declare
your pattern array and set each of its values, as follows:

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 141

char pattern[11]={0,1,2,3,0,1,2,3,0,1,2};

int x;

3. At the top of your main function, add a statement to declare a variable
called count, as shown below:

int count;

4. In your main function, above your while... loop, create a for... loop, based
on the count variable, that repeats 10 times, as shown below. The count
for... loop should contain a second for... loop, based on the x variable, that
passes each value in the pattern array to the light function.

for (count=1; count<11; count++)

{

 for(x=0; x<count; x++)

 {

 light(pattern[x]);

 }

}

5. Compile and test your new code.

Challenge 1: Generate a Random Array
Requiring the Player to Respond

In the original Simon game, the player has to respond each time a new sequence
of lights and tones is displayed. You can make this happen by by enclosing your
while... loop with a for... loop based on the x variable.

1. Rename your code file player_respond.c.

2. Enclose your while... loop inside a new for... loop based on the x
variable. Change the arguments of the while... loop to prevent the code
from moving forward until a button is pressed, as shown below:

for (count=1; count<11; count++)

{

 for(x=0; x<count; x++)

 {

 light(pattern[x]);

 }

 for(x=0; x<count; x++)

 {

 while(Y_BUTTON!=0 && R_BUTTON!=0 && O_BUTTON!=0 &&

G_BUTTON!=0);

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 142

 if(Y_BUTTON==0)

 {

 light(0);

 }

 else if(R_BUTTON==0)

 {

 light(1);

 }

 else if(O_BUTTON==0)

 {

 light(2);

 }

 else if(G_BUTTON==0)

 {

 light(3);

 }

 delay_ms(100);

 }

 }

}

3. Compile and test your new code.

Challenge 1: Generate a Random Array
About Timer0

As written, your code always generates the same sequence of lights and tones
every time. This would not make for a very challenging game! In the next step,
you will write code to assign a random value, between 0 and 3, to each position
in the pattern array. To do this, you will make use of one of the microcontroller's
internal timers. This timer; called Timer0 or just TMR0; changes in value so
rapidly that at any given instant, its value is essentially random.

TMR0 increases in value by 1 every microsecond until it reaches its maximum
value of 255 and then it resets to 0. Therefore, at any given instant, there is
about a 25-percent chance that TMR0's value is between 0 and 63, or between
64 and 128, or between 129 and 192, or between 193 and 255.

Challenge 1: Generate a Random Array
Making the Array Random

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 143

Now that you understand how TMR0 works, you can use this timer to assign
values to the pattern array, creating a random sequence of lights/tones each time
you play the game.

1. Rename your code file random_array.c.

2. Add the highlighted code, initializing timer0 before the start of your
count for"¦ loop, and then setting the value of pattern[x] to 0, 1, 2, or 3 each
time through the loop, based on TMR0:

tmr0_init(DIV_256); //Initialize timer0

for(count=1; count<11; count++)

{

 if(TMR0>0&&TMR0<=63) //Timer value in first quarter

 {pattern[x]=0;} //Set element x of array to yellow

 else if(TMR0>63&&TMR0<=128) //Timer value in second quarter

 {pattern[x]=1;} //Set element x of array to red

 else if(TMR0>128&&TMR0<=192) //Timer value in third quarter

 {pattern[x]=2;} //Set element x of array to orange

 else //Timer value in fourth quarter

 {pattern[x]=3;} //Set element x of array to green

3. Compile and test your new code.

Challenge 2: Signal Wins and Losses

With your pattern array, the rudiments of the memory game are
taking place. Each time you turn the board on, an expanding
sequence of lights and tones is displayed, and the player must
respond by pressing buttons on the board. In this challenge, you will

program the game to evaluate each button pressed to make sure that the player
is following the correct sequence. Any wrong button press will trigger a "losing
routine," signaling that the game is lost. If a player makes it all the way to the
end, a "victory routine" will be performed, signaling that the game has been won.

Challenge 2: Signal Wins and Losses
Checking for Correct Responses

Since the correct pattern for each game is stored in the pattern array, checking
whether the correct button has been pressed is easy. You just have to compare
the value of the color variable passed to the light function with the corresponding
value of the pattern array.

1. Rename your code file check_value.c.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 144

2. At the top of your light function, add the following code:

void light(char color)

{

 if(color!=pattern[x])

 {

 end();

 }

3. Compile and test your new code.

Challenge 2: Signal Wins and Losses
Programming a Losing Routine

You can use any routine you want to signal an incorrect button was pressed. The
code presented below will light all four LEDs and make a low buzzing sound.

1. Rename your code file losing_routine.c.

2. Add the following code to the first if... statement in your light function:

void light(char color)

{

 if(color!=pattern[x])

 {

 Y_LED=0;

 R_LED=0;

 O_LED=0;

 G_LED=0;

 tone(50,wholnote);

 Y_LED=1;

 R_LED=1;

 O_LED=1;

 G_LED=1;

 end();

 }

3. Compile and test your new code.

Challenge 2: Signal Wins and Losses
Adding a Victory Routine

With your losing routine, the player knows when the game is lost, but what about
when the player wins? To signal the end of the game, you need to program a
victory routine. Again, you can have any routine you want. The code shown

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 145

below will flash all four LEDs and play a short melody if a player makes it to the
end of the game.

1. Rename your code file victory_routine.c.

2. At the bottom of your main function, after the for... loops, add the
following code:

 delay_ms(1000);

 Y_LED=0;

 R_LED=0;

 O_LED=0;

 G_LED=0;

 tone(C5,sixtnote);

 tone(D5,sixtnote);

 tone(E5,sixtnote);

 tone(G5,eighnote);

 tone(E5,sixtnote);

 tone(G5,halfnote);

 tone(C6,wholnote);

 Y_LED=1;

 R_LED=1;

 O_LED=1;

 G_LED=1;

 end();

3. Compile and test your new code.

Challenge 3: Add Advanced Features

Congratulations! You have built a functioning electronic memory
game, much like the original Simon. In this challenge, you will add
two advanced features to make the game more exciting to play. First,
you will make the pace of play accelerate as the game goes on, so

that each sequence will be presented a little more quickly than the last. And then,
you will build in a time limit, so that players must press the correct sequence
within a certain time frame or automatically lose!

Challenge 3: Add Advanced Features
Accelerating Game Play

With the code you have written so far, each LED is lit for a period equal to the
duration of one half note (640 ms). To make the game speed up as it goes along,
you need to add a variable to represent the duration of each tone, and then make
the variable decrease in value as the game goes on.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 146

1. Rename your code file speed_play.c.

2. Near the top of your code file, where the rest of your global variables are
declared, declare a new integer variable called length, as shown below:

int length;

3. In your light function, replace all of the halfnote tone durations with your
new length variable, as shown below:

if(color==0)

{

 Y_LED=0;

 tone(C5,length);

 Y_LED=1;

4. In your main function, add a line of code at the top of your count for...
loop that will make the length variable decrease with each turn.

for(count=1; count<11; count++)

{

 length=640/count+100;

5. Compile and test your new code.

Challenge 3: Add Advanced Features
Building in a Time Limit

One final step will make your memory game just like the original: making sure
players don't take too much time to repeat each sequence. Otherwise, a player
could cheat by writing down the sequence each time! To build in the time limit,
you will need to add some code to the while... loop that waits for a button to be
pressed each time. Using TMR0, you can automatically end the game if a player
takes too long.

1. Rename your code file timelimit.c.

2. Near the top of your code file, where the rest of your global variables are
declared, declare a new integer variable called check, as shown below:

int check;

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 147

3. Remove the semicolon at the end of your while... statement, and add the
following code inside your while... loop to end the game if too much time
goes by:

while(Y_BUTTON!=0&&R_BUTTON!=0&&O_BUTTON!=0&&G_BUTTON!=0)

{

 if(T0IF==1)

 {

 check=check+1;

 T0IF=0;

 }

 if(check>30)

 {

 light(5);

 }

}

check=0;

4. Compile and test your new code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 148

Unit 1: Programming the Keypad

These days, almost every cell phone features a text-messaging capability, which
allows the user to enter a short text message and then send the message to
another cell phone customer. Text messages are sent using wireless radio
frequency communication, through cellular telephone networks.

Figure 1. Text-messaging device.

In this project, you will create a device that uses infrared light to transmit text
messages wirelessly from one breadboard to another. You will connect a keypad,
an infrared transmitter, and an infrared receiver to the board. You will program
the microcontroller to decipher input from the keypad, display the input on the
LCD, send this data via the infrared transmitter, and receive text messages from
other boards. Figure 1 shows a text-messaging device.

Text Messenger Unit 1 has three challenges. In Challenge 1, you will add a
keypad to the breadboard and learn about its connections to the microcontroller.
In Challenge 2, you will write code to "scan" the keypad--checking one key at a
time to determine whether it has been pressed. In Challenge 3, you will refine
your code to enable text entry.

Challenge 1: Install the Keypad

In this challenge, you will add a 4x4 keypad to the breadboard, using
an eight-strand flat-flex cable to connect the keypad to the
microcontroller. You will also learn about the keypad's matrix layout
and examine how each key is linked to the microcontroller.

Challenge 1: Install the Keypad
Collecting Your Components

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 149

In order to complete Unit 1, you will need the following components (shown in
Figure 2):

Part Quantity Description

A 1 Keypad

B 1 Flat-flex cable (eight-strand)

C 1 Straight connector (eight-pin)

Figure 2. Text Messenger components.

Challenge 1: Install the Keypad
Adding the Keypad

The keypad is connected to the breadboard by an eight-strand flat-flex cable.
This cable links to an eight-pin straight connector, which plugs into the board,
adjacent to Ports B0 through B7.

1. Insert the eight-pin straight connector into the XBoard, as shown in
Figure 3. NOTE: Be sure to align the pins with Ports B0 to B7, as shown.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 150

Figure 3. Inserting eight-pin straight connector.

2. Connect the flat-flex cable to the pins on the back of the keypad, as
shown in Figure 4.

Figure 4. Connecting flat-flex cable to the back of the keypad.

3. Connect the loose end of the flat-flex cable to the eight-pin straight
connector. Orient the cable so that you can read text on the LCD when you
are pressing buttons on the keypad.

Challenge 1: Install the Keypad
Understanding the Keypad

Take a close look at the keypad. The keys are arranged in a 4x4 matrix, with 16
keys in total. Inside the flat-flex cable, there are eight wires connecting the
keypad to pins on the microcontroller--one for each column in the matrix (these

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 151

connect to Ports B4 to B7) and one for each row (these connect to Ports B0 to
B3). Figure 5 shows how the keys are arranged, and how each column and row
is connected to the microcontroller.

 B7 B6 B5 B4

B3 1 2 3 A

B2 4 5 6 B

B1 7 8 9 C

B0 O F E D

Figure 5. Keypad connections.

There are letters and numbers on each key, but these letters and numbers mean
nothing. Each key is just a switch. When you press a key, you make a connection
between the key's column and the key's row. For instance, when you press the 1
key, you connect Port B3 to Port B7. When you press the D key, you connect
Port B0 to Port B4.

Challenge 2: Scan the Keypad

Your second challenge in this project is to write code that gathers
input from the keypad. To do this, your code will "scan" the keypad--
checking one key at a time to see whether it has been pressed.

Challenge 2: Scan the Keypad
Understanding the Scanning Code

In order to scan the keypad, you will set up Ports B0 to B3 as outputs, and set up
Ports B4 to B7 as inputs. Initially, all eight pins will be set high (i.e. equal to 1).
Then, one pin at a time, you will set Ports B0, B1, B2, and B3 low (i.e. equal to
0), while simultaneously checking the value at Ports B4, B5, B6, and B7.
Whenever a key is pressed in a row that has been set low, that key's column will
go low as well.

Figure 6 shows how the key scanning code works. The ports on the left are all
outputs, while the ports on the right are all inputs. Notice that, for each key, there
is a unique pair of ports that have a value of 0, while every other port has a value
of 1. For example, in row one, Port B3 (an output) has been set low, and the 1
key has been pressed. As a result, Port B7 (an input) goes low as well.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 152

Figure 6. Port values for each key.

Challenge 2: Scan the Keypad
Scanning One Row

As a first step, you will write code to scan one row of the keypad--the row with
the following four keys: 1, 2, 3, and A. These keys are all connected to Port B3.
In your code, you will set Port B3 low (i.e. equal to 0) and then continuously
check the value at Ports B4 through B7. If any of these ports goes low, you will
know that a key has been pressed. Each time this happens, you will change the
value of a variable called key, and display the value of key on the LCD.

1. In the Programming Window, create a new file, and save it as one_row.c.

2. Type or paste the following code into the window:

#include "mxapi.h"

void main(void)

{

 char key=0; //Declare a variable key

 RBPU=0; //Set pull-up resistors on Port B

 lcd_init(); //Initialize the LCD

 TRISB3=0; //Set Port B3 as an output

 TRISB2=0; //Set Port B2 as an output

 TRISB1=0; //Set Port B1 as an output

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 153

 TRISB0=0; //Set Port B0 as an output

 TRISB7=1; //Set Port B7 as an input

 TRISB6=1; //Set Port B6 as an input

 TRISB5=1; //Set Port B5 as an input

 TRISB4=1; //Set Port B4 as an input

 RB3=1; //Set Port B3 high

 RB2=1; //Set Port B2 high

 RB1=1; //Set Port B1 high

 RB0=1; //Set Port B0 high

 while(1==1) //Set up while loop

 {

 RB3=0;

 if(RB7==0) //If 1 key is pressed

 {

 key=1;

 }

 else if(RB6==0) //If 2 key is pressed

 {

 key=2;

 }

 else if(RB5==0) //If 3 key is pressed

 {

 key=3;

 }

 else if(RB4==0) //If A key is pressed

 {

 key=4;

 }

 RB3=1;

 lcd_decimal(key); //Display value of key

 delay_ms(400);

 lcd_instruction(CLEAR);

 }

}

3. Compile and test your new code.

Challenge 2: Scan the Keypad
Scanning All Four Rows

Now that you know how to scan one row of keys, scanning more rows is
straightforward. Just set the port for each row (first Port B3, then B2, then B1,
then B0) low, and check the value at Ports B4 to B7 (using an if... or an else if...

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 154

statement for each port). Whenever each of these ports goes low, change the
value of the key variable.

1. Using the Save As command, rename your code file more_columns.c.

2. Edit your code file as follows:

#include "mxapi.h"

void main(void)

{

 char key=0; //Declare a variable key

 RBPU=0; //Set pull-up resistors on Port B

 lcd_init(); //Initialize the LCD

 TRISB3=0; //Set Port B3 as an output

 TRISB2=0; //Set Port B2 as an output

 TRISB1=0; //Set Port B1 as an output

 TRISB0=0; //Set Port B0 as an output

 TRISB7=1; //Set Port B7 as an input

 TRISB6=1; //Set Port B6 as an input

 TRISB5=1; //Set Port B5 as an input

 TRISB4=1; //Set Port B4 as an input

 RB3=1; //Set Port B3 high

 RB2=1; //Set Port B2 high

 RB1=1; //Set Port B1 high

 RB0=1; //Set Port B0 high

 while(1==1) //Set up while loop

 {

 RB3=0;

 if(RB7==0) //If 1 key is pressed

 {

 key=1;

 }

 else if(RB6==0) //If 2 key is pressed

 {

 key=2;

 }

 else if(RB5==0) //If 3 key is pressed

 {

 key=3;

 }

 else if(RB4==0) //If A key is pressed

 {

 key=4;

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 155

 }

 RB3=1;

 RB2=0;

 if(RB7==0) //If 4 key is pressed

 {

 key=5;

 }

 else if(RB6==0) //If 5 key is pressed

 {

 key=6;

 }

 else if(RB5==0) //If 6 key is pressed

 {

 key=7;

 }

 else if(RB4==0) //If B key is pressed

 {

 key=8;

 }

 RB2=1;

 RB1=0;

 if(RB7==0) //If 7 key is pressed

 {

 key=9;

 }

 else if(RB6==0) //If 8 key is pressed

 {

 key=10;

 }

 else if(RB5==0) //If 9 key is pressed

 {

 key=11;

 }

 else if(RB4==0) //If C key is pressed

 {

 key=12;

 }

 RB1=1;

 RB0=0;

 if(RB7==0) //If O key is pressed

 {

 key=13;

 }

 else if(RB6==0) //If F key is pressed

 {

 key=14;

 }

 else if(RB5==0) //If E key is pressed

 {

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 156

 key=15;

 }

 else if(RB4==0) //If D key is pressed

 {

 key=16;

 }

 RB0=1;

 lcd_decimal(key); //Display value of key

 delay_ms(400);

 lcd_instruction(CLEAR);

 }

}

3. Compile and test your new code. If your keypad code is working
properly, you now have a main function that changes the value of the
variable called key, depending on what key you press. The value of key
should range from 1 to 16, as shown in Figure 7.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 7. Value of key variable for each key on the keypad.

Challenge 2: Scan the Keypad
Converting Your Keypad Code into a Library Function

You will need your keypad scanning code for the next step in this project--using
the keypad to enter text. However, since the keypad scanning code is quite long,
it makes sense at this stage to save this code as a separate file, which can then
be inserted into your main code file with an include statement. This process--
known as creating a library function--is often used in C programming to keep
code files from getting too long. Library functions also have the advantage of
being reusable--once they are created, you can use them any time you want.

1. Using the Save As command, save your code file as mxkeyscan.c.

2. Modify your code file, as shown below:

int keyscan(void)

{

 char key=0; //Declare a variable key

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 157

 RBPU=0; //Set pull-up resistors on Port B

 TRISB3=0; //Set Port B3 as an output

 TRISB2=0; //Set Port B2 as an output

 TRISB1=0; //Set Port B1 as an output

 TRISB0=0; //Set Port B0 as an output

 TRISB7=1; //Set Port B7 as an input

 TRISB6=1; //Set Port B6 as an input

 TRISB5=1; //Set Port B5 as an input

 TRISB4=1; //Set Port B4 as an input

 RB3=0;

 if(RB7==0) //If 1 key is pressed

 {

 key=1;

 }

 else if(RB6==0) //If 2 key is pressed

 {

 key=2;

 }

 else if(RB5==0) //If 3 key is pressed

 {

 key=3;

 }

 else if(RB4==0) //If A key is pressed

 {

 key=4;

 }

 RB3=1;

 RB2=0;

 if(RB7==0) //If 4 key is pressed

 {

 key=5;

 }

 else if(RB6==0) //If 5 key is pressed

 {

 key=6;

 }

 else if(RB5==0) //If 6 key is pressed

 {

 key=7;

 }

 else if(RB4==0) //If B key is pressed

 {

 key=8;

 }

 RB2=1;

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 158

 RB1=0;

 if(RB7==0) //If 7 key is pressed

 {

 key=9;

 }

 else if(RB6==0) //If 8 key is pressed

 {

 key=10;

 }

 else if(RB5==0) //If 9 key is pressed

 {

 key=11;

 }

 else if(RB4==0) //If C key is pressed

 {

 key=12;

 }

 RB1=1;

 RB0=0;

 if(RB7==0) //If O key is pressed

 {

 key=13;

 }

 else if(RB6==0) //If F key is pressed

 {

 key=14;

 }

 else if(RB5==0) //If E key is pressed

 {

 key=15;

 }

 else if(RB4==0) //If D key is pressed

 {

 key=16;

 }

 RB0=1;

 return key; //Return the value of key

}

Note that, if you try to compile this file, you will get errors, because it
doesn't have a main function. You don't need to compile it. Just be sure to
save it in the same folder that your main code file will be in, using the name
"mxkeyscan.c".

Challenge 2: Scan the Keypad
Calling the Key Scanning Function

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 159

So far, mxkeyscan.c is the first library file that you have written, but you have
been using library files all along. The file that you include at the top of every
Machine Science code file--mxapi.h--is also a library file. Including this file allows
you to use certain functions, like delay_ms() and end(), in your code. From now
on, to use the keyscan function in your code, you will have to include
mxkeyscan.c at the top of your code file.

By including mxkeyscan.c in your code file, you can then call the keyscan
function whenever you need it. The keyscan function returns the value of the
variable called key, which ranges from 1 to 16, depending on which key is
pressed. In this section, you will write code to call the keyscan function, and
display the value returned by the function.

1. In the Programming Window, start a new code file and save it as
call_keyscan.c.

2. Enter the following code into the window:
#include "mxapi.h"

#include "mxkeyscan.c"

void main(void)

{

 int keynumber; //Declare a variable called keynumber

 lcd_init(); //Initialize the LCD

 while(1==1)

 {

 keynumber=keyscan(); //Set keynumber equal to the value

returned by the keyscan function

 lcd_decimal(keynumber);

 delay_ms(400);

 lcd_instruction(CLEAR);

 }

}

3. Compile and test your new code. (Note: When no key is pressed, the LCD
will display a 0. This is because, when no key is pressed, the keyscan
function returns a 0.)

Challenge 3: Enable Text Entry

As a next step, you will program the microcontroller to convert the
input gathered from the keypad into real text messages--starting first
with individual letters, then multiple letters. By the end of this
challenge, you will be able to key in strings of text, which will be

saved as arrays on the microcontroller.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 160

Challenge 3: Enable Text Entry
About ANSI Codes

In order to enter text messages, you will need to convert keypad input into letters
and punctuation marks. Fortunately, the microcontroller has a built-in ability to
translate numerical values into characters, using ANSI codes. The ANSI
character codes were developed by the American National Standards Institute
(ANSI), a non-profit organization that helps U.S. companies adhere to standards
for the design of their products and systems. Figure 8 shows the ANSI codes for
various characters.

ANSI Character ANSI Character ANSI Character ANSI Character

65 A 77 M 89 Y 33 !

66 B 78 N 90 Z 34 "

67 C 79 O 48 0 35 #

68 D 80 P 49 1 36 $

69 E 81 Q 50 2 37 %

70 F 82 R 51 3 38 &

71 G 83 S 52 4 39 '

72 H 84 T 53 5 44 ,

73 I 85 U 54 6 45 -

74 J 86 V 55 7 46 .

75 K 87 W 56 8 47 /

76 L 88 X 57 9 63 ?

Figure 7. ANSI codes for letters, numbers, and punctuation marks.

Challenge 3: Enable Text Entry
Converting Keypad Input into Letters

Using an lcd_character statement, you can display the character equivalent of
whatever ANSI code you pass to it. For example, lcd_character(65) displays an
A, lcd_character(66) displays a B, and so on. In this section, you will introduce a
variable called ansi, and set ansi equal to the value of keynumber plus 64. That
way, if keynumber equals 1, ansi will equal 65 (A); if keynumber equals 2, ansi
will equal 66 (B), and so on.

1. Rename your code file ansi_codes.c.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 161

2. Modify your code file, as follows:

#include "mxapi.h"

#include "mxkeyscan.c"

void main(void)

{

 int keynumber;

 int ansi; //Declares new variable called ansi

 lcd_init();

 while(1==1)

 {

 keynumber=keyscan();

 ansi=keynumber+64;

 lcd_character(ansi);

 delay_ms(400);

 lcd_instruction(CLEAR);

 }

}

3. Compile and test your new code. (Note: When no key is pressed, the LCD
will display the @ symbol. This is because, when no key is pressed,
keynumber is equal to 0, and the ANSI code for the @ symbol is 64.)

Challenge 3: Enable Text Entry
Entering More Characters

So far, your code assigns one character to each key on the keypad, which limits
you to only 16 characters--not enough for a real text message. To get around this
problem, you need to assign multiple characters to each key, and then program
the keypad to scroll through those letters with each key press. (Since most cell
phones have only a numeric keypad, cell phone users employ a similar method
for entering contact information and text messages.)

In this section, you will assign four letters to each key. Each time you press the
key, you will scroll through those four letters. The 1 key will scroll through A, B,
C, and D, the 2 key will scroll through E, F, G, and H, and so on. To do this, you
will need to introduce another variable, called rotate, which will increase in value
every time a key is pressed, cycling from 0 to 3 and then back to 0.

In order to convert keynumber to ansi, you will use the following formula:

ansi=(keynumber*4)+61+rotate

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 162

This may look confusing, but it is a relatively straightforward equation. Figure 8
shows how it works for the first three keys in row one--the 1 key, the 2 key, and
the 3 key.

Key rotate keynumber *4= +61= +rotate= Character

1 0 1 4 65 65 A

1 1 1 4 65 66 B

1 2 1 4 65 67 C

1 3 1 4 65 68 D

2 0 2 8 69 69 E

2 1 2 8 69 70 F

2 2 2 8 69 71 G

2 3 2 8 69 72 H

3 0 3 12 73 73 I

3 1 3 12 73 74 J

3 2 3 12 73 75 K

3 3 3 12 73 76 L

Figure 8. Converting keynumber to ansi for scrolling text.

1. Rename your code file more_characters.c.

2. Modify your code file as follows:

#include "mxapi.h"

#include "mxkeyscan.c"

void main(void)

{

 int keynumber;

 int ansi;

 int rotate=0;

 lcd_init();

 while(1==1)

 {

 keynumber=keyscan();

 if(keynumber!=0)

 {

 ansi=(keynumber*4)+61+rotate;

 lcd_character(ansi);

 delay_ms(400);

 lcd_instruction(GOTO_LINE1+0);

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 163

 rotate=rotate+1;

 if(rotate==4)

 {

 rotate=0;

 }

 }

 }

}

3. Compile and test your new code.

Challenge 3: Enable Text Entry
Building Strings of Characters

Now you can enter any character you want, but you can only enter and display
one character at a time. To make text messages, you will want to build a string of
characters. To do this, you will assign a specific function to one key--each time
you press this key, it will shift the character entry position one space to the right
on the LCD. Essentially, this will be your "Enter" key.

In the code below, you will program the O key to serve as the Enter key. You will
declare another variable, called position. The position variable will be passed to
an lcd_instruction (GOTO) statement. Position will increase by 1 every time you
press the O key. That way, the cursor will be repositioned before the next
character is entered.

1. Rename your code file character_string.c.

2. Modify your main function, as follows:

#include "mxapi.h"

#include "mxkeyscan.c"

void main(void)

{

 int keynumber;

 int ansi;

 int rotate=0;

 int position=0;

 lcd_init();

 while(1==1)

 {

 keynumber=keyscan();

 if(keynumber>0&&keynumber<13)

 {

 ansi=(keynumber*4)+61+rotate;

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 164

 lcd_instruction(GOTO_LINE1+position);

 lcd_character(ansi);

 delay_ms(400);

 rotate=rotate+1;

 if(rotate==4)

 {

 rotate=0;

 }

 }

 else if(keynumber==13)

 {

 position=position+1;

 rotate=0;

 delay_ms(400);

 }

 }

}

3. Compile and test your new code.

PROGRAMMING NOTE
The double ampersands (&&) used in character_string.c represent a logical
AND operator. The condition (keynumber>0&&keynumber<13) will be true

only if keynumber is greater than 0 AND keynumber is less than 13.

Challenge 3: Enable Text Entry
Adding a Clear Key

The code you have written so far allows you to build and display strings of text,
adding one character at a time from left to right. If you happen to make a
mistake, it would be useful to back up and clear the last character you entered. In
this section, you will program the F key to perform this function--shifting the
cursor to the left and clearing the previous character. This will essentially become
your "Clear" key. To clear characters you will use an lcd_character statement
with an ANSI code of 32, which is a space character.

1. Rename your code file as clear_key.c.

2. Add another else if... statement to your code, assigning a specific routine
to the F key, as follows:

else if(keynumber==14)

{

 lcd_instruction(GOTO_LINE1+position);

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 165

 lcd_character(32);

 position=position-1;

 delay_ms(400);

}

3. Compile and test your new code.

Challenge 3: Enable Text Entry
Creating an Array to Store Text Input

Using the code you have written so far, you can enter virtually any text you want.
However, the data is not actually stored anywhere--it's simply displayed on the
LCD. In order to transmit a text message, you will have to store the data, using
an array.

An array is an ordered list of two or more values that is assigned a specific name.
Figure 10 shows how to set up your array. The array is called message, and it
has 16 values. Initially, all 16 values are set to 32 (the ANSI code for a blank
character).

char message[16]={32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32};

Figure 10. Setting up the message array.

Figure 11 shows the procedure for changing a specific value in the message
array.

message[position]=ansi;

Figure 11. Setting a specific value in the message array.

In the code below, you will set up the message array. Every time the Enter key is
pressed, you will set the corresponding value in the array equal to ansi. Every
time the Clear key is pressed, you will set the corresponding value in the array
equal to 32. Finally, you will program the E key to display the entire message
array on the second line of the LCD.

1. Rename your code file message_array.c.

2. Modify your code file, as follows:

#include "mxapi.h"

#include "mxkeyscan.c"

char message[16]={32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32};

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 166

void main(void)

{

 int keynumber;

 int ansi;

 int rotate=0;

 int position=0;

 lcd_init();

 while(1==1)

 {

 keynumber=keyscan();

 if(keynumber>0&&keynumber<13)

 {

 ansi=(keynumber*4)+61+rotate;

 lcd_instruction(GOTO_LINE1+position);

 lcd_character(ansi);

 delay_ms(400);

 rotate=rotate+1;

 if(rotate==4)

 {

 rotate=0;

 }

 }

 else if(keynumber==13)

 {

 message[position]=ansi;

 position=position+1;

 rotate=0;

 delay_ms(400);

 }

 else if(keynumber==14)

 {

 lcd_instruction(GOTO_LINE1+position);

 lcd_character(32);

 message[position]=32;

 position=position-1;

 delay_ms(400);

 }

 else if(keynumber==15)

 {

 lcd_instruction(GOTO_LINE2+0);

 lcd_text(message);

 delay_ms(400);

 }

 }

}

3. Compile and test your new code. You should be able to key in a
message, one character at a time, and then press the D key to display the
entire message on the LCD's second line.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 167

Challenge 3: Enable Text Entry
Extra Activities

If you have finished with all of the tasks in this chapter, try tackling some of the
additional activities described below.

1. Program an unused key to display other useful characters, such as
lowercase letters, numbers, or punctuation marks. (Hint: You will need to
add one or more else if... statements for these keys.)

2. Program an unused key to serve as a Reset key, which clears the whole
LCD and erases the stored message. (Hint: You will need to add another
else if... statement for this key. Inside this statement, you will need
separate statements to clear the LCD, reset the values of the message
array to 32, and set all of your variables back to 0.)

3. Using pieces of tape or adhesive-backed label paper, affix labels to each
key indicating its group of letters or its function.

Unit 2: Decoding Infrared Signals

Using your keypad code, you can enter short messages and display them on the
LCD, and with your message array, you can store a sequence of characters on
the microcontroller. In order to build a working text messenger, you need to
program your the microcontroller to transmit this data, and to receive text
messages from other microcontrollers.

Cell phones, pagers, and text-messaging devices have antennas that emit and
receive radio frequency signals, communicating with towers that
telecommunication companies have established along roadways and in densely
populated areas. These signals can pass through walls and have a range of
several miles. In contrast, your text messenger will be communicate using
carefully timed pulses of infrared light, which require "line of sight" proximity.

In this unit, you will connect an infrared receiver and program the microcontroller
to decipher infrared signals. In the next unit, you will connect an infrared
transmitter to the XBoard and program it to send messages. Figure 1 shows the
infrared transmitted and receiver used in this project.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 168

Figure 1. Infrared transmitter (left) and receiver (right).

Challenge 1: Install the Infrared Receiver

Challenge 1 is a simple hardware task--adding the infrared receiver
to the XBoard. The installation of the receiver is very simple. It has
three prongs that connect to power, ground, and the microcontroller.

Challenge 1: Install the Infrared Receiver
Collecting Your Components

In order to complete Unit 2, you will need the following components (shown in
Figure 2):

Part Quantity Description

A 1 Infrared receiver

B 2 Jump wires (1 short yellow and 1 short orange)

C 1 Flexible jump wire

Figure 2. Text Messenger Unit 2 components.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 169

Challenge 1: Install the Infrared Receiver
Installing the Infrared Receiver

The infrared receiver has three prongs, which connect to power, to ground, and to Port
D0 on the microcontroller.

1. Make sure the power switch on your battery pack is in the OFF position.

2. Insert a short yellow jump wire, a short orange jump wire, a flexible blue jump
wire, and the infrared receiver into the XBoard, as shown in the video to the right
and in Figure 3. NOTE: Make sure that the small shiny dome on the infrared
receiver is oriented exactly as shown.

3. Connect the loose end of the flexible blue jump wire to Port D0 on the
microcontroller. (If you need help finding Port D0, refer to the PIC
Microcontroller Quick Reference document.)

Figure 3. Infrared receiver properly installed.

Challenge 2: Understand Infrared Communication

Your second challenge is to understand the basics of infrared
communication. This includes learning about the infrared signals sent
out by remote control devices, as well as the binary number system
(a system of counting used by computers).

http://guides.machinescience.org/mod/book/view.php?id=734&chapterid=1426
http://guides.machinescience.org/mod/book/view.php?id=734&chapterid=1426
http://guides.machinescience.org/mod/book/view.php?id=734&chapterid=1426

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 170

Challenge 2: Understand Infrared Communication
About Infrared Signals

Many electronic devices use infrared signals to communicate. For example, any
time you push a button on a remote control for a TV or stereo, the remote control
sends out a coded, infrared signal, as shown in Figure 4. The device being
controlled has an infrared receiver, which relays the signal from the remote to a
microcontroller. The microcontroller decodes the signal and then initiates tasks,
such as adjusting the volume on the TV, switching the VCR to fast-forward, or
flipping the channel on the cable box from CNN to HBO.

Figure 4. Infrared remote control.

The signal from the remote control is not a continuous beam of infrared light--it is
a series of intermittent short and long pulses. The receiver translates these short
and long pulses into periods of high voltage (5 volts) and low voltage (0 volts),
which the microcontroller interprets as 1s and 0s. Figure 5 shows how this works.

Figure 5. Translating infrared pulses into 1s and 0s.

The pulses from the infrared emitter are sent in batches, with 13 pulses in each
batch. The first pulse is a "start" pulse, which signals that a batch is starting.
Each of the next 12 pulses is either long or short, with long pulses representing
1s and short pulses representing 0s. If you look closely at Figure 5, you will
notice that, after the start pulse, the infrared receiver sends a high voltage signal
for every long pulse it receives and a low voltage signal for every long pulse it
receives. The microcontroller then interprets these signals as 1s and 0s,
respectively, and arranges them into 12-digit strings, such as 001010101101.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 171

Notice that the order of the 1s and 0s is the reverse of the order of the infrared
pulses.

Challenge 2: Understand Infrared Communication
About Binary Numbers

To the microcontroller, every string of 1s and 0s has a specific meaning: it
represents a binary number. Binary is a system of counting used by computers.
Binary counting differs from our usual way of counting in one important respect--
binary uses only two digits: 1 and 0. The number system we commonly use is
called the decimal system, and it is based on 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and
9. We can use these 10 digits to represent any number we want--from single-digit
numbers, like 3 and 7, to multi-digit numbers, like 685.

Each digit in a multi-digit decimal number has a different value, depending on its
place in the number. For example, in the number 685, the digit 6 is in the
hundreds place, meaning it has a value of 600. The digit 8 is in the tens place,
and has a value of 80. The 5 is in the ones place, and has a value of 5. This is
represented schematically below:

Seems obvious, doesn't it? You are so used to seeing decimal numbers, you
probably don't realize that you are performing a calculation each time you see
one, but you are!

Likewise, each digit in a binary number has a different value, depending on its
place. The value of each digit is based on a power of 2, rather than a power of
10. For example, consider the first string of 1s and 0s sent to the microcontroller
from the infrared receiver in the previous section--001010101101. The value of
this binary number can be calculated, as follows:

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 172

As it turns out, the decimal number 685 and the binary number 001010101101
have the same value. This many seem confusing, but the important thing to
remember is that any number can be represented in binary, using just 1s and 0s,
and any binary number can be easily converted into a decimal number, using the
process shown above.

Challenge 3: Decipher Signals from the Remote Control

In Challenge 3, you will program the microcontroller to receive and
interpret the coded signals sent by the remote control. First, you will
write code to detect any signal. Next, you will write code to detect the
specific start pulse that signals the beginning of a transmission from

the remote. By the end of this challenge, you will have written a library function
that returns a number whenever the receiver gets a transmission from the remote
control.

Challenge 3: Decipher Signals from the Remote Control
Setting Up the Remote Control

In order to use the remote control, you must first install batteries in the device
and program it with the correct TV code. The procedure to do this is different for
every remote. Below are the instructions to program the Radio Shack 3-in-1
Remote Control, the Aifa URC4, and the Philips Universal Remote.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 173

Figure 6. Installing remote batteries.
The Radio Shack 3-in-1 is shown at the top, and the Aifa URC4 is shown

below.

For the Radio Shack 3-in-1 Remote Control, use the following procedure:

1. Insert two AAA batteries in the remote control, as shown above in Figure
6. NOTE: Batteries are not included with Remote Expansion Pack.

2. Press and hold the CODE SEARCH button on the remote control until the
red indicator stays on.

3. Press the TV button. The red indicator light should blink and then stay lit.

4. Press the 4 button, then the 1 button, then the 4 button. The red light
should go off. If it stays lit, repeat steps 2, 3, and 4.

For the Aifa URC4 Remote, use the following procedure:

1. Insert two AAA batteries in the remote control, as shown above in Figure
5. Batteries are not included with Remote Expansion Pack.

2. Press the green SET button on the remote control and hold it while
pressing the TV button.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 174

3. When the red indicator light comes on, release both buttons. The red
light should stay on.

4. Press the 1 button, then the 2 button, then the 8 button. The red light
should go off. If it stays lit, repeat steps 2, 3, and 4.

For the Philips Universal Remote, use the following procedure:

1. Insert two AAA batteries in the remote control, as shown above in Figure
5. Batteries are not included with Remote Expansion Pack.

2. Press the CODE SEARCH button and hold it down until the red LED
stays lit.

3. Press the 0 button, then the 4 button, then the 1 button, then the 4
button. The red light should go off. If it stays lit, repeat steps 1 and 2.

Challenge 3: Decipher Signals from the Remote Control
Receiving a Signal from the Remote

As a first step, you will write code to indicate on the LCD whenever the infrared
receiver detects a signal from the remote control. This is relatively
straightforward, because any signal from the remote control will cause Port D0 to
go low (i.e. have a value of 0).

1. Start a new code file in the Programming Portal and name it got_signal.c.

2. Enter the following code:

#include "mxapi.h"

void main(void)

{

 lcd_init();

 TRISD0=1; //Sets up Port D0 as input

 while(RD0==1); //Waits here while D0 is high

 lcd_text("Got signal!"); //Displays "Got signal!"

 end();

}

3. Compile and test your new code. Point the remote at your XBoard and
press a button--your LCD should display the message "Got signal!" Press
the reset button on the XBoard, and try again.

PROGRAMMING NOTE

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 175

In certain rare instances, the infrared receiver may pick up stray signals from
sources other than the remote control, causing the LCD to display the "Got
signal!" message spontaneously. If you notice unexpected "Got signal!"
messages, try testing your device in another room.

Challenge 3: Decipher Signals from the Remote Control
Measuring the Start Pulse

The remote control sends infrared signals in batches of 13 pulses, beginning with
a "start" pulse. Each start pulse lasts about 2.5 milliseconds. Whenever you
press a button, the voltage at Port D0 goes low, remains low for about 2.5
milliseconds, and then goes high again. Using one of the microcontroller's
internal timers, you can precisely measure the length of the start pulse.

1. Using the Save As command, rename your code file measure_pulse.c.

2. Modify your code file, as follows:

#include "mxapi.h"

void main(void)

{

 int pulse_length; //Declare a variable

 lcd_init(); //Initialize the LCD

 tmr0_init(DIV_64); //Initialize the internal timer

 TRISD0=1; //Set Port D0 as an input

 while(RD0==1); //Wait here while D0 is high

 TMR0=0; //Reset the internal timer to 0

 while(RD0==0); //Wait here while D0 is low

 pulse_length=TMR0; //Record timer value

 lcd_decimal(pulse_length); //Display timer value

 end();

}

3. Compile and test your new code.

PROGRAMMING NOTE

The PICF16877 microcontroller has three internal timers--TMR0, TMR1, and
TMR2. TMR0 and TMR2 constantly cycle from 0 to 255, and TMR1 constantly cycles

from 0 to 65535. You can use these timers to precisely measure the duration of certain

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 176

events or to perform a task for a precise period of time.

Challenge 3: Decipher Signals from the Remote Control
Timing the Start Pulse in Microseconds

The DIV_64 in the line initializing timer 0 means that TMR0 increases in value by
1 approximately every 64 microseconds. Therefore, by multiplying TMR0's value
by 64, you can calculate the duration of the start pulse in microseconds. The
following code example performs this calculation and displays the result on the
LCD.

1. Using the Save As command, rename your code file time_pulse.c.

2. Modify your main function, as follows:

#include "mxapi.h"

void main(void)

{

 int pulse_length;

 lcd_init();

 tmr0_init(DIV_64);

 TRISD0=1;

 while(RD0==1);

 TMR0=0;

 while(RD0==0);

 pulse_length=TMR0;

 pulse_length=pulse_length*64;

 lcd_decimal(pulse_length);

 lcd_text(" microsecs");

 end();

}

3. Compile and test your new code.

Challenge 3: Decipher Signals from the Remote Control
Detecting a Start Pulse

As you can see, there is some variation in the length of the start pulse, but the
value is usually quite close to 2500 microseconds. Using this information, you
can program the microcontroller to recognize a start pulse. This will be important
later on, because a start pulse will signal the beginning of a transmission of 0s
and 1s.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 177

1. Using the Save As command, rename your code file start_pulse.c.

2. Modify your main function, as follows:

#include "mxapi.h"

void main(void)

{

 int pulse_length;

 lcd_init();

 tmr0_init(DIV_64);

 TRISD0=1;

 while(RD0==1);

 TMR0=0;

 while(RD0==0);

 pulse_length=TMR0;

 pulse_length=pulse_length*64;

 if((pulse_length>2300)&&(pulse_length<2800))

 {

 lcd_text("Got start pulse!");

 }

 end();

}

3. Compile and test your new code. Press reset and try different buttons on
the remote.

Challenge 3: Decipher Signals from the Remote Control
Detecting Ones and Zeros

Every start pulse is followed by a series of long and short pulses, representing 1s
and 0s, respectively. Each long pulse lasts approximately 1,300 microseconds,
and each short pulse lasts about 700 microseconds. In this section, you will write
code to detect whether the first pulse that arrives after the start pulse is long or
short, and display either "One" or "Zero" on the LCD.

1. Using the Save As command, rename your code file other_pulses.c.

2. Modify your main function, as follows:

#include "mxapi.h"

void main(void)

{

 int pulse_length;

 lcd_init();

 tmr0_init(DIV_64);

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 178

 TRISD0=1;

 while(RD0==1);

 TMR0=0;

 while(RD0==0);

 pulse_length=TMR0;

 pulse_length=pulse_length*64;

 if((pulse_length>2300)&&(pulse_length<2800))

 {

 while(RD0==1);

 TMR0=0;

 while(RD0==0);

 pulse_length=TMR0;

 pulse_length=pulse_length*64;

 lcd_text("Start plus ");

 if((pulse_length>500)&&(pulse_length<1000))

 {

 lcd_text("Zero");

 }

 if((pulse_length>1100)&&(pulse_length<1800))

 {

 lcd_text("One");

 }

 }

 end();

}

3. Compile and test your new code. Press reset and try different buttons on
the remote. Some will produce "plus Zero" messages, while others will
produce "plus One" messages.

Challenge 3: Decipher Signals from the Remote Control
Making Strings of Ones and Zeros

Now that you can detect start pulses and pulses representing 1s and 0s, you
need to build strings of 1s and 0s that the microcontroller can store as binary
numbers. Fortunately, there is an easy way to do this in C. To start, you need to
declare a variable called ir_code to store your binary number. Your variable will
be a 12-digit number, with an initial value of 000000000000. Then, with the
following code, you can "shift" all 12 digits of the binary value of ir_code one
place to the left and insert a new digit:

ir_code=(ir_code<<1)+1;

ir_code=(ir_code<<1)+0;

1. Using the Save As command, rename your code file binary_string.c.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 179

2. Modify your code file, as follows:

#include "mxapi.h"

void main(void)

{

 int pulse_length;

 int ir_code;

 int i;

 lcd_init();

 tmr0_init(DIV_64);

 TRISD0=1;

 while(RD0==1);

 TMR0=0;

 while(RD0==0);

 pulse_length=TMR0;

 pulse_length=pulse_length*64;

 if((pulse_length>2300)&&(pulse_length<2800))

 {

 for(i=0; i<12; i++)

 {

 while(RD0==1);

 TMR0=0;

 while(RD0==0);

 pulse_length=TMR0;

 pulse_length=pulse_length*64;

 if((pulse_length>500)&&(pulse_length<1000))

 {

 ir_code=(ir_code<<1)+0;

 }

 if((pulse_length>1100)&&(pulse_length<1800))

 {

 ir_code=(ir_code<<1)+1;

 }

 }

 }

 lcd_digits(ir_code, BASE_2, LEADING_ZEROS, 12);

 end();

}

3. Compile and test your new code. Whenever you press a button on the
remote, your LCD should display a different 12-digit binary number on the
LCD. NOTE: You will need to press the reset button between each trial.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 180

Challenge 3: Decipher Signals from the Remote Control
Converting Your Infrared Receiving Code into a Library Function

You will need your infrared receiving code for the next step in this project--
programming the XBoard to receive text messages from other XBoards. Since
the infrared receiving code is quite long, you should make it into a library file, just
as you did with your keypad scanning code in the previous section.

1. Using the Save As command, save your code file as mxread_ir.c.

2. At the top of your code file, delete the include statements, the line
initializing the LCD, and the line initializing the timer, and rename your
main function "read_ir," as shown below. Note that there is an "int"
declaration before the function name, indicating that the read_ir function
will return an integer value. At the bottom of your code file, add a return
statement, delete the lcd_digits and end statements. The completed library
function is shown below:

int read_ir(void)

{

 int pulse_length;

 int ir_code;

 int i;

 TRISD0=1;

 tmr0_init(DIV_64);

 while(RD0==1);

 TMR0=0;

 while(RD0==0);

 pulse_length=TMR0;

 pulse_length=pulse_length*64;

 if((pulse_length>2300)&&(pulse_length<2800))

 {

 for(i=0; i<8; i++)

 {

 while(RD0==1);

 TMR0=0;

 while(RD0==0);

 pulse_length=TMR0;

 pulse_length=pulse_length*64;

 if((pulse_length>500)&&(pulse_length<1000))

 {

 ir_code=(ir_code<<1)+0;

 }

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 181

 if((pulse_length>1100)&&(pulse_length<1800))

 {

 ir_code=(ir_code<<1)+1;

 }

 }

 }

 return(ir_code);

}

NOTE: The library file will not compile on its own. It works only within the
context of a code file that calls the read_ir function. In the next section, you
will write a code file and include this library file.

Challenge 3: Decipher Signals from the Remote Control
Calling the Library Function

By including mxread_ir.c in your code file, you can then call the read_ir function
whenever you need it. The read_ir function returns the value of the variable
called ir_code.

1. In the Programming Window, start a new code file called call_read_ir.c.

2. Enter the following code into the Programming Window:

#include "mxapi.h"

#include "mxread_ir.c"

void main(void)

{

 int ir_code=0;

 lcd_init();

 while(1==1)

 {

 ir_code=read_ir();

 lcd_instruction(GOTO_LINE1+0);

 lcd_digits(ir_code, BASE_2, LEADING_ZEROS, 12);

 }

 end();

}

3. Compile and test your new code.

Unit 3: Sending and Receiving Text

By now, you have completed two important steps toward building a working text
messenger. In Unit 1, you added a keypad and programmed the microcontroller

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 182

to decipher input from the keypad. In Unit 2, you connected an infrared receiver
to your board, and learned how to gather and interpret signals from an infrared
remote control. You have created two library files-- mxkeyscan.c and
mxir_read.c--that enable text entry and infrared signal reception.

In this unit, you will connect an infrared transmitter to the breadboard and
program the microcontroller to send messages from one board to another. The
infrared transmitter is similar to the one found on the front end of the remote
control. Figure 1 shows the remote control's transmitter, next to the breadboard
with its infrared transmitter attached.

Figure 1. Remote control transmitter (left) and breadboard infrared
transmitter (right).

Challenge 1: Install the Infrared Transmitter

To begin, you must add an infrared transmitter to the breadboard.
Later, you will program the transmitter to send infrared signals, just
as signals are emitted by the infrared transmitter at the end of the
remote control. The installation of the transmitter is slightly more

involved than the receiver, requiring a resistor and a small integrated circuit.

Challenge 1: Install the Infrared Transmitter

Collecting Your Components

In order to complete Unit 3, you will need the following components (shown in
Figure 2):

Part Quantity Description

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 183

A 1 Infrared transmitter

B 1 Integrated circuit (Texas Instruments 74HCT132E)

C 4 Jump wires (2 short yellow, 1 short orange, and 1 white)

D 1 Resistor (390 Ohm)

E 2 Flexible jump wires (1 black and 1 white)

Figure 2. Text Messenger Unit 3 components.

Challenge 1: Install the Infrared Transmitter
Installing the Infrared Transmitter

The infrared transmitter should be installed on the breadboard between the infrared
receiver and the LCD. An integrated circuit, which looks like a miniature version of the
microcontroller, is needed to control the output from the transmitter.

1. Make sure the power switch on your battery pack is in the OFF position.

2. Remove the LCD screen from the XBoard. (NOTE: Take note of the position of
the LCD's pins, so that you can reinstall it in step 4.)

3. Insert the integrated circuit, a yellow jump wire, a white jump wire, an orange
jump wire, and two flexible jump wires into the breadboard, as shown in the
video and in Figure 3.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 184

Figure 3. Installing the integrated circuit.

4. Return the LCD to its original position.

5. Look closely at the infrared transmitter. Find the flat edge along rim of
the diode, and the shorter of the two pins. Carefully bend a 90-degree angle
in the two pins, keeping the transmitter oriented as shown in Figure 4.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 185

Figure 4. Bending the infrared transmitter.

6. Insert the infrared transmitter and a 390-Ohm resistor into the XBoard, as
shown in Figure 5. NOTE: The transmitter should face in the same direction
as the infrared receiver. The transmitter should go in holes I48 and I49, and
the resistor should connect hole J49 to power.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 186

Figure 5. Installing the infrared transmitter.

Challenge 2: Send Infrared Signals

In this challenge, you will program the microcontroller to send out
infrared signals from the transmitter. In order to check whether your
transmitter is working, you will need to have two boards--one board
to send signals (the SENDER board) and another board to receive

signals (the RECEIVER board). For this reason, you must have a partner for this
challenge. You and your partner will take turns sending and receiving signals to
verify that both boards are working properly. Before long, you will be able to send
whole text messages back and forth.

Challenge 2: Send Infrared Signals
Finding a Partner

1. Find a partner to work with on this challenge.

2. Position your board so that the infrared receiver and transmitter on one
board are aligned with the corresponding components on the other board,
as shown in Figure 6. NOTE: You may have to reposition one or both
boards in order to program and reprogram them. Always position them as
shown in Figure 6 when testing your code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 187

Figure 6. Two XBoards facing each other.

Challenge 2: Send Infrared Signals
Sending a Signal

As a first step, you will program the SENDER board to transmit an infrared
signal.

1. Decide which board will be the RECEIVER and which will be the SENDER
.

2. Program the RECEIVER board with the got_signal.c code that you wrote
in Unit 2.

3. On the computer hooked up to the SENDER board, launch the
Programming Portal, and open the message_array.c file that you wrote in
Unit 1.

4. Using the Save As command, rename message_array. code file
send_signal.c.

5. Modify your code file, as follows:

#include "mxapi.h"

#include "mxkeyscan.c"

char message[16]={32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32};

void main(void)

{

 int keynumber;

 int ansi;

 int rotate=0;

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 188

 int position=0;

 lcd_init();

 TRISD1=0;

 RD1=0;

 pwm_init(38000,50,50);

 while(1==1)

 {

 keynumber=keyscan();

 if(keynumber>0&&keynumber<13)

 {

 ansi=(keynumber*4)+61+rotate;

 lcd_instruction(GOTO_LINE1+position);

 lcd_character(ansi);

 delay_ms(400);

 rotate=rotate+1;

 if(rotate==4)

 {

 rotate=0;

 }

 }

 else if(keynumber==13)

 {

 message[position]=ansi;

 position=position+1;

 rotate=0;

 delay_ms(400);

 }

 else if(keynumber==14)

 {

 lcd_instruction(GOTO_LINE1+position);

 lcd_character(32);

 message[position]=32;

 position=position-1;

 delay_ms(400);

 }

 else if(keynumber==15)

 {

 lcd_instruction(GOTO_LINE2+0);

 lcd_text(message);

 RD1=1;

 delay_us(500);

 RD1=0;

 delay_ms(400);

 }

 }

}

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 189

6. Compile and test your new code. Remember to position the two XBoards
as shown in Figure 6. Use the reset button to reset the code on the
RECEIVER board and make sure the RECEIVER is consistently receiving
signals from the SENDER .

7. Reprogram the boards so that the RECEIVER becomes the SENDER, and
vice versa, and make sure both boards are working properly.

Challenge 2: Send Infrared Signals
Sending a Start Pulse

Once you have sent your first signal from one board to another, you are ready to
send a start pulse. Remember that every transmission from the remote control
began with a start pulse, lasting approximately 2500 microseconds.

1. Decide which board will be the RECEIVER and which will be the
SENDER.

2. Program the RECEIVER with the start_pulse.c code that you wrote in
Unit 2.

3. On the computer hooked up to the SENDER board, load your
send_signal.c file and rename it send_start_pulse.c.

4. In the section of the file that controls the E (send) key, make the
following modifications:

 else if(keynumber==15)

 {

 lcd_instruction(GOTO_LINE2+0);

 lcd_text(message);

 RD1=1;

 delay_us(2500);

 RD1=0;

 delay_ms(400);

 }

5. Compile and test your new code. Remember to orient the two boards as
shown in Figure 6. Use the reset button to reset the code on the RECEIVER
board and make sure the RECEIVER is consistently receiving start pulses
from the SENDER .

6. Reprogram the boards so that the RECEIVER becomes the SENDER, and
vice versa, and make sure both boards are working properly.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 190

Challenge 2: Send Infrared Signals
Sending Ones and Zeros

1. Decide which board will be the RECEIVER and which will be the
SENDER.

2. Program the RECEIVER with the 'other_pulses.c' code that you wrote in
Unit 2.

3. On the computer hooked up to the SENDER board, load your
'send_start_pulse.c' code file and rename it 'send_other_pulse.c'.

4. In the section of the file that controls the E (send) key, make the
following additions:

 else if(keynumber==15)

 {

 lcd_instruction(GOTO_LINE2+0);

 lcd_text(message);

 RD1=1;

 delay_us(2500);

 RD1=0;

 delay_us(500);

 RD1=1;

 delay_us(750);

 RD1=0;

 delay_ms(400);

 }

5. Compile and test your new code. Remember to orient the two XBoards
as shown in Figure 6. Use the reset button to reset the code on the
RECEIVER board and make sure the RECEIVER is consistently receiving
other pulses from the SENDER.

6. Reprogram the boards so that the RECEIVER is the SENDER, and vice
versa, and make sure both boards are working properly.

7. Modify the SENDER code so that it sends the pulse for a "One" instead
of a "Zero" after the start pulse.

Challenge 2: Send Infrared Signals
Sending Binary Numbers

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 191

Each text character that you transmit from the SENDER board to the RECEIVER
board will be represented by a string of 1s and 0s--in other words, a binary
number. Unlike the remote control, which sent 12-digit strings of 1s and 0s after
each start pulse, your infrared transmitter will use only 8 digits to send each
character. In order to do this efficiently, you will write a function, called pulse, with
a loop that sends each of the eight digits one at a time.

1. Decide which board will be the RECEIVER and which will be the SENDER
.

2. On the computer hooked up to the RECEIVER, load the mxread_ir.c file
that you wrote in Unit 2.

3. Modify the for... loop in the mxread_ir.c file as follows:

 for(i=0; i<8; i++)

 {

 while(RD0==1);

 TMR0=0;

 while(RD0==0);

 pulse_length=TMR0;

 pulse_length=pulse_length*16;

 if((pulse_length>500)&&(pulse_length<1000))

 {

 ir_code=(ir_code<<1)+0;

 }

 if((pulse_length>1100)&&(pulse_length<1800))

 {

 ir_code=(ir_code<<1)+1;

 }

 }

4. Save your new mxread_ir.c file.

5. On the computer hooked up to the RECEIVER, load the call_read_ir.c
code file that you wrote in Unit 2. Rename the file receive_binary.c.

6. Modify your receive_binary.c code file as follows:

#include "mxapi.h"

#include "mxread_ir.c"

void main(void)

{

 int ir_code=0;

 lcd_init();

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 192

 ir_code=read_ir();

 lcd_digits(ir_code, BASE_2, LEADING_ZEROS, 8);

 end();

}

7. Compile your code and program the RECEIVER board.

8. On the computer hooked up to the SENDER board, load your
send_other_pulses.c file and rename it send_binary.c.

9. Near the top of the file, right after the statement declaring your message
array, add a new function called pulse:

void pulse(void)

{

 int i=0;

 RD1=1;

 delay_us(2500);

 RD1=0;

 delay_us(500);

 for(i=0; i<8; i++)

 {

 RD1=1;

 delay_us(1300);

 RD1=0;

 delay_us(500);

 }

}

10. In the section of the code file that controls the E (send) key, make the
following additions:

 else if(keynumber==15)

 {

 lcd_instruction(GOTO_LINE2+0);

 lcd_text(message);

 pulse();

 delay_ms(400);

 }

11. Compile and test your new code. Remember to position the two
XBoards as shown in Figure 6. Use the reset button to reset the code on
the RECEIVER board and make sure the RECEIVER is consistently
receiving other pulses from the SENDER.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 193

12. Reprogram the boards so that the RECEIVER is the SENDER, and vice
versa, and make sure both boards are working properly.

Challenge 2: Send Infrared Signals
About AND-ing Binary Numbers

In the next step, you will pass a binary number to your pulse function, which will
then send out a long pulse for each 1 in the number and a short pulse for each 0.
To do this, your function will perform an operation called "ANDing" to determine
the value of each digit in the number. "ANDing" is a mathematical operation, like
adding or multiplying. The symbol for "ANDing" is the ampersand (&), just as the
symbol for adding is the plus (+) and the symbol for multiplying is the asterisk (*).

When you AND two binary numbers together, the microcontroller lines up all the
digits in the two numbers, compares each digit, and produces a result. If both
digits are 1s, the result is a 1. If both digits are 0s, or if one digit is a 1 and the
other is a 0, the result is a 0. This may sound confusing, but it is actually very
simple. Below, some one-digit binary numbers are ANDed:

For multi-digit binary numbers, each digit is ANDed one at a time:

Note that, if the left-most digit in the top number is a 0, the result of ANDing it
with 10000000 is 0. If the left-most digit in the top number is a 1, the result is not
a 0. Using this information, you can determine the value of any digit in a binary
number.

Challenge 2: Send Infrared Signals

Passing a Value to the Pulse Function

Rather than sending all 1s or all 0s, you can pass a specific binary number to the
pulse function.

1. Decide which board will be the RECEIVER and which will be the
SENDER.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 194

2. On the computer hooked up to the SENDER, load your 'send_binary.c'
file and rename it 'pass_value.c'.

3. Modify your pulse function, as follows:

void pulse(int data_value)

{

 int i=0;

 RD1=1;

 delay_us(2500);

 RD1=0;

 delay_us(500);

 for(i=0; i<8; i++)

 {

 RD1=1;

 if((data_value & 0b10000000) !=0)

 {

 delay_us(1300);

 }

 else

 {

 delay_us(700);

 }

 RD1=0;

 delay_us(500);

 data_value = data_value << 1;

 }

}

4. In the section of the code file that controls the E (send) key, make the
following additions:

 else if(keynumber==15)

 {

 lcd_instruction(GOTO_LINE2+0);

 lcd_text(message);

 pulse(0b11110001);

 delay_ms(400);

 }

5. Compile and test your new code. Remember to orient the two XBoards
as shown in Figure 6. Use the reset button on the RECEIVER a few times
and make sure the RECEIVER is consistently receiving the right binary
number from the SENDER .

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 195

6. Reprogram the boards so that the RECEIVER is the SENDER, and vice
versa, and make sure both boards are working properly.

Challenge 3: Send Text

Now that you can send binary numbers from one XBoard to another,
you are ready to start sending text. Remember that every text
character has an associated ANSI code. If you send the ANSI code
for the character, your RECEIVER board can easily display the

corresponding character.

Challenge 3: Send Text

Sending Characters

To send text characters from one XBoard to another, all you need to do is
program the SENDER board to transmit the ANSI character code associated with
that character. You can display text character on the RECEIVER board's LCD,
using an lcd_character statement.

1. Decide which board will be the RECEIVER and which will be the
SENDER.

2. On the computer hooked up to the RECEIVER, load the receive_binary.c
file that you created during the previous challenge. Rename your file
receive_character.c.

3. Modify your receive_character.c code file as follows:

#include "mxapi.h"

#include "mxread_ir.c"

void main(void)

{

 int ir_code=0;

 lcd_init();

 ir_code=read_ir();

 lcd_character(ir_code);

 end();

}

4. Compile your code and program the RECEIVER board.

5. On the computer hooked up to the SENDER, load your pass_value.c file.
Rename this file send_character.c.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 196

6. In the section of the code file that controls the D (send) key, make the
following modifications:

 else if(keynumber==15)

 {

 lcd_instruction(GOTO_LINE2+0);

 lcd_text(message);

 pulse(65);

 delay_ms(400);

 }

7. Compile and test your new code. Use the reset button on the RECEIVER
a few times and make sure the RECEIVER is consistently receiving the
right character.

8. Reprogram the boards so that the RECEIVER is the SENDER, and vice
versa, and make sure both boards are working properly.

Challenge 3: Send Text
Sending Text Messages

In order to send a full message, you need to pass the values of your message
array to the pulse function one at a time. These will then be received and
displayed by the RECEIVER board.

1. Decide which board will be the RECEIVER and which will be the
SENDER.

2. On the computer hooked up to the RECEIVER, load the
receive_character.c file. Rename your file receive_message.c.

3. Modify the main function in receive_message.c, as follows:

void main(void)

{

 int ir_code=0;

 tmr0_init(DIV_64);

 lcd_init();

 while(1==1)

 {

 ir_code=read_ir();

 lcd_character(ir_code);

 }

 end();

}

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 197

4. On the computer hooked up to the SENDER, load the send_character.c
file. Rename your file send_message.c.

5. Modify your code, as shown below:

#include "mxapi.h"

#include "mxkeyscan.c"

char message[16]={32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32};

void pulse(int data_value)

{

 int i=0;

 RD1=1;

 delay_us(2500);

 RD1=0;

 delay_us(500);

 for(i=0; i<8; i++)

 {

 RD1=1;

 if((data_value & 0b10000000) !=0)

 {

 delay_us(1300);

 }

 else

 {

 delay_us(700);

 }

 RD1=0;

 delay_us(500);

 data_value = data_value << 1;

 }

}

void main(void)

{

 int keynumber;

 int ansi;

 int rotate=0;

 int position=0;

 int m=0;

 lcd_init();

 TRISD1=0;

 RD1=0;

 pwm_init(38000,50,50);

 while(1==1)

 {

 keynumber=keyscan();

 if(keynumber>0&&keynumber<13)

 {

 ansi=(keynumber*4)+61+rotate;

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 198

 lcd_instruction(GOTO_LINE1+position);

 lcd_character(ansi);

 delay_ms(400);

 rotate=rotate+1;

 if(rotate==4)

 {

 rotate=0;

 }

 }

 else if(keynumber==13)

 {

 message[position]=ansi;

 position=position+1;

 rotate=0;

 delay_ms(400);

 }

 else if(keynumber==14)

 {

 lcd_instruction(GOTO_LINE1+position);

 lcd_character(32);

 message[position]=32;

 position=position-1;

 delay_ms(400);

 }

 else if(keynumber==15)

 {

 lcd_instruction(GOTO_LINE2+0);

 lcd_text(message);

 for(m=0; m<16; m++)

 {

 pulse(message[m]);

 }

 delay_ms(400);

 }

 }

}

6. Compile and test your new code. Remember to position the two XBoards
as shown in Figure 6. You should be able to key in and send any message
you want (16 characters or less). You can use the reset button on the
RECEIVER to receive new messages.

8. Reprogram the boards so that the RECEIVER is the SENDER, and vice
versa, and make sure both boards are working properly.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 199

Building and Controlling the XBot

Mobile robots are becoming increasingly common. In factories and hospitals,
mobile robots are often used to make deliveries or perform dangerous jobs, and
mobile robots are even being used in the home. Figure 1 shows a basic robot
with an aluminum chassis and two servo motors.

Figure 1. Mobile robot.

In this project, you will create your own mobile robot, which we refer to as the
XBot. Mobile Robot Unit 1 has three challenges. Challenge 1 is the hardware
portion of the project--building the XBot. In Challenge 2, you will program the
XBot to execute some basic maneuvers. In Challenge 3, you will write a function
to make robot navigation much easier.

Challenge 1: Build the XBot

The Mobile Robot project begins with a hardware challenge--
mounting the Arduino and breadboard on an aluminum chassis,
adding motors and wheels, and making electrical connections. By the
end of this challenge, you will have your own XBot, ready for

programming!

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 200

Challenge 1: Build the XBot
Collecting Your Components

In order to build the XBot, you will need the components listed below and shown
in Figure 2. NOTE: The components contained in some older kits may differ
slightly.

Part Quantity Description

A 1 Anodized aluminum chassis

B 2 Servo motors

C 2 Plastic disc wheels (with O-ring tires)

D 4 Aluminum standoffs (1.25" 4-40)

E 1 Cotter pin (3.5")

F 1 Plastic ball (1.5" diameter)

G 1 Press-on velcro strip (6") or rubberband

H 14 Machine screws, round head slotted (3/8" 4-40)

I 14 Machine screw nuts (4-40)

J 6 Jump wires (2 long red, 2 short yellow, 2 short orange)

K 1 Bent six-prong connector

Figure 2. XBot components.

Challenge 1: Build the XBot
Installing the Servo Motors

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 201

The XBot is propelled by two servo motors--each secured with four machine screws.

1. Insert the servos into the chassis, as shown in Figure 3. NOTE: Be sure to
orient the servo motors exactly as shown, with the wires protruding near the two
round holes in the chassis.

2. Secure each servo with four machine screws, attaching the nuts on the inside
of the chassis.

Figure 3. Servo motors correctly positioned in chassis.

Challenge 1: Build the XBot
Attaching the Wheels

1. If your servo motors have a four-pointed plastic star on each axle, remove this
piece and save the black metal screw, as shown in Figure 4.

2. Fit a rubber O-ring tire over each wheel. NOTE: Some wheels may already
have tires in place.

3. Push the two wheels firmly onto the servo motor axles.

4. Secure the wheels using the black metal screws from each axle, as shown in
Figure 4.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 202

Figure 4. Removing the plastic star (left) and attaching the wheel (right).

Challenge 1: Build the XBot
Adding the Front Caster

The front of the robot is supported by a caster--a plastic ball attached to the
underside of the robot chassis by two aluminum rods, called standoffs. The
plastic ball is suspended between the standoffs by a cotter pin, which serves as
an axle. The ball rolls when the robot is traveling forward or reverse and slides
when the robot turns. There are two different ways to mount the caster,
depending on the contents of your kit.

1. If your kit has 1.5" 6-32 standoffs with holes drilled through the ends,
insert the cotter pin through standoffs and the plastic ball, as shown in
Figure 5 (left).

2. If your kit has only 1.25" 4-40 standoffs, mount the cotter pin and the ball
to the standoffs with two 4-40 machine screw nuts, as shown in Figure 5
(right).

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 203

Figure 5. Two ways to mount the cotter pin and plastic ball.

3. Insert the standoffs into the two round holes at the front of the robot, as
shown in Figure 6, and secure each end. If you have 1.5" 6-32 standoffs,
use two 6-32 machine screw nuts to secure the standoffs. If you have 1.25"
4-40 standoffs, use two 3/8" 4-40 machine screws to secure the standoffs.
NOTE: In either case, be careful not to overtighten the standoffs .

Figure 6. Caster secured to robot chassis.

Challenge 1: Build the XBot
Mounting the Battery Pack

The XBot is powered by a battery pack. Click here if you need help. The battery pack
mounts on the underside of the robot chassis, and is held in place by two velcro strips.
In order to connect to the breadboard, the battery pack must be oriented as shown in
Figure 8. If Velcro is not available, create a mount of your own design.

1. Disconnect the battery pack from the breadboard, if it is connected.

2. Using scissors, cut two 1.5-inch strips of double-sided velcro tape.

3. Keeping the two sides of the velcro together, peel the backing from one side
of each strip and press the two strips onto the battery pack, as shown in Figure

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 204

7.

Figure 7. Velcro strips attached to the battery pack.

4. Peel the remaining backing from the velcro strips, and press the battery
pack onto the underside of the robot chassis, as shown in Figure 8. Be
careful to orient the battery pack so that the switch and wire are positioned
exactly as shown.

Figure 8. Mounting the battery pack.

Challenge 1: Build the XBot
Securing the Atmega and Breadboard

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 205

The Atmega and breadboard are secured to the top of the robot chassis with Velcro
strips. If Velcro is unavailable, use a thick rubber band. As with the battery pack, the
orientation of the Atmega and breadboard are critical to ensure that all of the
necessary electrical connections can be made in the next step.

1. Using scissors, cut two 1.5-inch strips of double-sided Velcro tape.

2. Keeping the two sides of the Velcro together, peel the backing from one side
of each strip and press the two strips onto the underside of the breadboard, as
shown in Figure 9.

Figure 9. Velcro strips attached to the underside of the XBoard.

3. Peel the backing from the velcro, and press the breadboard onto the
robot chassis, as shown in Figure 10. Align the board's front edge with the
holes where the standoffs protrude through the chassis.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 206

Figure 10. Positioning the breadboard.

Challenge 1: Build the XBot
Making Electrical Connections

In order to finish the XBot, a few additional jump wires and a bent six-prong connector
must be added to the breadboard. In addition, the servo motor leads must be plugged
into the breadboard, and the battery pack must be reconnected.

1. Remove the LCD and its connecting wires from the breadboard. Remove all
switches and LED circuits, so that just the Arduino, its power and ground
connections, and the capacitor remain.

2. Insert two short yellow jump wires, two short orange jump wires, and two long
red jump wires into the XBoard, as shown in Figure 11. The short yellow jump
wires should connect holes J31 and J34 to power. The short orange jump wires
should connect holes J30 and J33 to ground. The long flexible jump wires
should connect port 9 to hole J32, and port 10 to J35.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 207

Figure 11. Yellow and orange jump wires.

3. Insert a bent six-prong connector into the XBoard, a shown in Figure 12.

Figure 12. Adding six-prong bent connector.

4. Thread the wire harnesses from the servo motors through the round hole
in the robot chassis.

5. Plug the wire harnesses from the servo motors into the bent six-prong
connector, as shown in Figure 13. NOTE: Be sure to align the white, red,
and black wires from left to right, as shown. (Black to ground, red to power
white to the Arduino.) Also, be sure to plug the wires from the left motor
onto the left side of the connector, and the wires from the right motor onto
the right side of the connector.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 208

Figure 13. Connecting servo motor wire harnesses.

Challenge 1: Build the XBot
Connecting a Battery Power Pack

1. Make sure the switch on your battery pack is in the OFF position.

2. Move the capacitor from the rail next to J3, and move it so it connects the blue
and red rail next to J61, as shown in Figure 14.

Figure 14. The 1uf capacitor attached to the rail near J61.

3. Disconnect the two-prong battery connecter that you used in the 7 segment
LED project, and move it to the rail next to A3. Face it away from the Arduino.
As shown in Figure 15.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 209

4. Reconnect the wire harness from the battery pack to the breadboard, as
shown in Figure 15. NOTE: The two-prong connector can be positioned
anywhere on the XBoard, provided that the black lead aligns with ground and
the red lead aligns with power.

 Be sure the red wire from the battery pack connects with the red rail on the
breadboard, and the black wire from the battery pack connects with the bluw rail
on the breadboard. Getting these wires backwards could destroy your Arduino.

Figure 15. Connecting a battery pack to the XBoard.

Protecting Your Arduino with a Schottkey Diode

Both your USB port and Arduino are designed to provide 100 milliamps of
current. This amount of electricity is easily enough to run LEDs and sensors, but
is not enough to run all but the smallest motors. To fix this problem, and to allow
your robot to run without a USB wire attached, you are going to attach a battery
power supply.

To prevent motors from drawing too much current from your
Arduino, when you program it, you are going to attach an

electronic component called a diode, that only lets electricity

go one way. Diodes have a white band on the side that will
provide power (+5v). Schottkey diodes are particularly fast and
only lower the voltage by a very small amount.

5. Move the jumper cable that connects the 5v power port from the red rail and
insert it into hole H4. Connect a Schottkey diode from the red power rail to hole
I4 facing the positive end toward hole I4, as shown in Figure 16.

Schottkey Diode

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 210

Figure 16. Connecting power through a Schottkey diode.

Reconnect the wire harness from the battery pack to the breadboard, as shown in
Figure 15. NOTE: The two-prong connector can be positioned anywhere on the
XBoard, provided that the black lead aligns with ground and the red lead aligns
with power.

Challenge 1: Build the XBot
Final Hardware Check

Before moving on to the next challenge, take a few minutes to check your
hardware set-up. If possible, ask a teacher or mentor to examine your robot.
The following checklist will help you ensure that your robot is ready for
programming.

 Servo motors: Both servo motors should be mounted to the chassis with
four machine screws. The wires from each servo should pass up through
the round holes in the chassis.

 Wheels: A plastic wheel with an O-ring tire should be mounted on each
servo motor axle, and held in place with a small black metal screw.

 Front caster: The front caster should be held securely in place with two
aluminum standoffs. The caster should turn freely on the cotter pin.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 211

 Battery pack: The battery pack should be positioned on the underside of
the robot chassis and held in place with two velcro strips, or attached to
the back of the Arduino securely by your invention.

 Breadboard: The breadboard should be secured with Velcro or a rubber
band to the top of the robot chassis, with the LCD close to the left servo
motor.

 Jump wires: All jump wires should be positioned as shown in Figure 11.
 Motor connections: Looking at the robot with the microcontroller on the

left, the wire harness from the left servo motor should be on the left, and
the wire harness from the right servo motor should be on the right. In each
harness, the colored wires should be ordered white, red, black, from left to
right.

 Battery leads: As always, the red lead from the battery pack should be
attached to H4, and the black lead should align with a blue line hole.

 Diode: A schottkey diode should connect I4 to the power rail with the red
line.

Challenge 2: Make the XBot Move

The defining feature of a mobile robot is the ability to move,
and mobile robots are very good at moving in controlled ways.
In Challenge 2, you will learn how to control the XBot's motors,
execute forward and reverse movements, make right and left

turns, and navigate fixed patterns.

Challenge 2: Make the XBot Move
About Servo Motors

The XBot is propelled by two hobby servo motors. Servo motors 4are
commonly used in the steering systems of radio-controlled vehicles, such
as boats and planes. Servo motors are usually designed to rotate in
precise increments between 0 and 180 degrees--a feature that makes
them useful for controlling the angle of rudders in radio-controlled boats

4
 To fully understand how the servo works, you need to take a look under the hood. Inside there is a pretty simple

set-up: a small DC motor, potentiometer, and a control circuit. The motor is attached by gears to the control
wheel. As the motor rotates, the potentiometer's resistance changes, so the control circuit can precisely regulate
how much movement there is and in which direction.
 When the shaft of the motor is at the desired position, power supplied to the motor is stopped. If not, the
motor is turned in the appropriate direction. The desired position is sent via electrical pulses through the signal
wire. The motor's speed is proportional to the difference between its actual position and desired position. So if the
motor is near the desired position, it will turn slowly, otherwise it will turn fast. This is called proportional control.
This means the motor will only run as hard as necessary to accomplish the task at hand, a very efficient little guy.
https://www.jameco.com/jameco/workshop/howitworks/how-servo-motors-work.html

https://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=category_root&subCategoryName=Electromechanical&category=35&refine=1&position=1&history=28hlc38h%7CfreeText~dc%2Bmotor%5Esearch_type~jamecoall%5EprodPage~50%5Epage~SEARCH%252BNAV
https://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=category_root&subCategoryName=Passive%20Components&category=20&refine=1&position=1&history=d0ww5ora%7CfreeText~potentiometer%5Esearch_type~jamecoall%5EprodPage~50%5Epage~SEARCH%252BNAV
https://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=category_root&subCategoryName=Power%20Supplies%20%26%20Wall%20Adapters&category=45
https://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=cat_25&subCategoryName=Wire%20%26%20Cable%20%2F%20Bulk%20Wire&category=2550&refine=1&position=1&history=wus4q9hh%7CsubCategoryName~Wire%2B%2526%2BCable%5Ecategory~25%5EcategoryName~category_root%5EprodPage~50%5Epage~SEARCH%252BNAV
https://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=cat_25&subCategoryName=Wire%20%26%20Cable%20%2F%20Bulk%20Wire&category=2550&refine=1&position=1&history=wus4q9hh%7CsubCategoryName~Wire%2B%2526%2BCable%5Ecategory~25%5EcategoryName~category_root%5EprodPage~50%5Epage~SEARCH%252BNAV
https://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&categoryName=cat_25&subCategoryName=Wire%20%26%20Cable%20%2F%20Bulk%20Wire&category=2550&refine=1&position=1&history=wus4q9hh%7CsubCategoryName~Wire%2B%2526%2BCable%5Ecategory~25%5EcategoryName~category_root%5EprodPage~50%5Epage~SEARCH%252BNAV
https://www.jameco.com/jameco/workshop/howitworks/how-servo-motors-work.html

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 212

and ailerons on airplane wings. The servo motors on your robot have been
modified to turn a full 360 degrees, so that they can drive your robot's
wheels. Figure 17 shows a typical hobby servo motor.

Figure 17. Hobby servo motor.

Challenge 2: Make the XBot Move
Controlling Servo Motors

Unlike conventional electric motors, which run continuously when connected to a
power source, servo motors are controlled with very short electrical pulses--each
lasting between 1,000 and 2,000 microseconds. Each pulse causes the servo
motor to rotate a few degrees. Servo motors can be made to rotate continuously
by sending them a rapid series of pulses, each separated by a pause of 20,000
microseconds (20 milliseconds). Figure 18 illustrates one pulse series that could
be used to drive a servo motor.

Figure 18. Servo motor pulse series.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 213

In the pulse series shown in Figure 18, the servo motor rotates a few degrees
with every pulse. Although there are pauses between the pulses, the pauses are
short (only 20 milliseconds), so the rotation of the servo is essentially continuous.

Challenge 2: Make the XBot Move
About Speed and Direction

The length of the pulse determines the speed and direction of the servo motor's
rotation. Pulses of 2,000 microseconds cause the motor to turn full speed in one
direction; pulses of 1,000 microseconds cause the motor to turn full speed in the
opposite direction. No matter what the pulse length, the pause between the
pulses is always 20 milliseconds. Figure 19 illustrates the relationship between
pulse length and rotation.

Figure 19. Relationship between pulse duration and wheel rotation.

Challenge 2: Make the XBot Move
Sending a Single Pulse

Your first programming task is to send a single pulse to the robot's left
servo motor. Recall that the left servo motor is connected to Port 9 on the
microcontroller. In order to send a pulse to the left servo motor, your code
should set up Port 9 as an output, using a pinMode() statement. Then, your
code should raise the voltage at Port 9 to 5 volts (i.e. digitalWrite(9,1))
 delay for 2,000 microseconds using a delayMicroseconds() command, and
then lower the voltage (i.e. digitalWrite(9,0))

1. Open the Programming Portal and start a new code file. Save it as one_pulse.

2. Enter the following code into the Editor window:

// Program 11.1Pulse

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 214

// servo is connected to port 9

void setup() {
 pinMode(9, OUTPUT); //set up port 0 to output 5 volts
 digitalWrite(9,1); // instruct servo to turn
 delayMicroseconds(2000);
 digitalWrite(9,0);
 }

void loop() { }

3. Program the microcontroller, and watch the left servo. It should turn a
few degrees. NOTE: A few degrees is a very small turn!

4. Press the reset button on the USB programming board a few times. The
motor will turn each time.

Challenge 2: Make the XBot Move
Sending a Series of Pulses

The next step is to send a series of pulses, causing the left servo motor to rotate
continuously. This is accomplished by creating a while... loop that sends a pulse
to the motor each time through. As you learned in Getting Started, while... loops
execute a piece of code while a certain condition is true. To create an infinite
loop, you need to tie the while... loop to a condition that is always true--for
example, while(1==1).

1. Using the Save As command, rename your code file pulse_series. If you
don't have a code file open, just enter the code shown below and save it as
pulse_series.

2. Modify the main function code in your code file, as follows. NOTE: You
still need your include statements at the top of your code file.

// Program 11.2Pulse
// servo is connected to port 9

void setup() {
 pinMode(9, OUTPUT); //set up port 0 to output 5 volts
 while (1==1){
 digitalWrite(9,1); // instruct servo to turn
 delayMicroseconds(2000);
 digitalWrite(9,0);

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 215

 delay(20);
 } // while
 }//setup

void loop() { }

3. Program the microcontroller with this new code. The motor should now
run continuously.

4. Turn the battery pack OFF before moving to the next step.

Challenge 2: Make the XBot Move

Changing the Direction of Rotation

By adjusting the duration of the pulse, you can change the direction of the servo
motor's rotation. The duration of the pulse is determined by the value inside the
delay_us statement in your code. Remember: all pulses must be greater than or
equal to 1,000 microseconds and less than or equal to 2,000 microseconds.
Never send a pulse that is shorter than 1,000 microseconds or longer than 2,000
microseconds.

1. Change the duration of the pulse to 1,000 microseconds and reprogram
the microcontroller.

2. Change the pulse back to 2,000 microseconds and reprogram the
microcontroller.

PROGRAMMING NOTE
Describing the direction of a wheel's rotation is tricky, because it depends on
how you are looking at the robot. In the Mobile Robot project guides, forward
means turning in the direction that makes the robot travel forward and reverse
means turning in the direction that makes the robot travel in reverse. With the

robot upright, forward is clockwise for the right servo and counterclockwise for the left
servo.

Challenge 2: Make the XBot Move
Printing a Robot Data Sheet

In the remainder of this unit, you will be asked to record important data about the
performance of your robot. By recording this information on paper, you will be
creating a data sheet for your robot, which will be a useful reference for future
activities involving the robot.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 216

1. Click here to open a printable version of this page in PDF format. You
will need the Acrobat Reader from Adobe to view the PDF.

2. Select the Print option to print this page.

CENTER POINT

Value Left Motor Pulse Duration Right Motor Pulse Duration

Longest Pulse with No Rotation

Shortest Pulse with No Rotation

True Center Point

FORWARD AND REVERSE

Motion Left Motor Pulse Duration Right Motor Pulse Duration

Full Speed Forward

Full Speed Reverse

Complete Stop

REVOLUTIONS PER MINUTE (RPM)

STRAIGHT MOTION

http://guides.machinescience.org/file.php/29/MR/Robot_Data_Sheet.pdf
http://www.adobe.com/products/acrobat/readstep2.html

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 217

Motion Left Motor Pulse Duration Right Motor Pulse Duration

Straight Forward

Straight Reverse

LEFT AND RIGHT TURNS

Motion Left Motor Pulse Duration Right Motor Pulse Duration

Left Turn

Right Turn

SPECIFIED DISTANCE

Value Value

No. of Pulses for Complete Rotation

Wheel Diameter

Wheel Circumference

Distance Per Pulse Ratio

PRECISE TURNS

Value Value

Distance Between Wheels

Turning Circumference

25% of Turning Circumference

No. of Pulses for a 90-Degree Turn

No. of Pulses for a 180-Degree Turn

Challenge 2: Make the XBot Move
Finding the Center Point

Every servo motor has a center point--the pulse duration at which the motor does
not turn at all. This pulse duration is always between 1,000 and 2,000
microseconds, and usually somewhere around 1,500 microseconds. A narrow
range of values produce no motion in the motor. The motor's "true" center point is
the average of the high and low values. The average of any two numbers is
equal to their sum, divided by 2, as shown in the following formula.

average of value 1 and value 2 = (value 1 + value 2) / 2

Using this formula, you can calculate the true center point for the left servo
motor.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 218

1. Start with a pulse of 1,500 microseconds and adjust this value until the
motor stops.

2. Find the highest value and the lowest value that produce no motion in
the motor. Record these values, because you will need them for the
exercises below.

3. Calculate the average of the high and low values. Record your result.

Challenge 2: Make the XBot Move
Controlling Both Motors

You can run both of your robot's motors at the same time by adding code to
control the right motor. Remember that the right motor is connected to Port B0.

1. Using the Save As command, rename your code file both_motors. If you
don't have a code file open, just enter the code shown below and save it as
both_motors.

2. Modify your main function to get the right motor running. NOTE: Before
downloading this code file, you may want to elevate your robot chassis
slightly, so that the wheels can turn freely without moving the robot.

// Program 11.3 Both
// Left servo port 9, Right servo port 10

void setup() {
 pinMode(9, OUTPUT); //set up port 0 to output 5 volts
 while (1==1){

 digitalWrite(9,1); // Program Left Motor
 delayMicroseconds(2000);
 digitalWrite(9,0);

 digitalWrite(10,1); // Program Right Motor
 delayMicroseconds(2000);
 digitalWrite(10,0);

 delay(20); //Run
 } // while
 }//setup

void loop() { }

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 219

3. Determine the true center point for the right motor, using the same
procedure you used in the previous section. Record all your values on the
Robot Data Sheet.

Challenge 2: Make the XBot Move
Making Forward and Reverse Movements

With both motors turning, you can program the robot to travel forward and in
reverse. Remember that the two motors are facing in opposite directions.

1. Adjust the pulse durations on each motor to make the robot travel
forward. Record these values in the Robot Data Sheet.

2. Adjust the pulse durations on each motor to make the robot travel in
reverse. Record these values in the Robot Data Sheet.

3. Adjust the pulse durations for each motor to make the robot stop.
Record these values in Robot Data Sheet.

Challenge 2: Make the XBot Move
Calculating Motor Speed

The speed of any motor--whether a car engine or a hobby servo motor--can be
measured in revolutions per minute, or RPMs. RPMs indicate how many times
the motor makes a complete rotation in one minute. A servo motor's RPMs
depend on the pulse lengths in your code. The motors have high RPMs at pulse
lengths close to 1,000 and 2,000 microseconds, and low RPMs at pulse lengths
near the center point.

1. Using tape, make a small mark on the outer edge of one of your robot's
wheels. This will make it easier to monitor the wheel's position.

2. Program the motor to turn full speed in one direction (with a pulse
duration of either 2,000 microseconds or 1,000 microseconds).

3. Count how many times the wheel rotates in one minute. This is the
wheel's RPM at full speed. NOTE: It may be easier to work with a partner on
this step, since it can be tricky to watch the clock and count rotations at
the same time.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 220

Challenge 2: Make the XBot Move
Adjusting Motors for Straight Motion

Chances are, your robot is not traveling in a perfectly straight line in either the
forward or the reverse direction. Using what you know about pulse duration and
RPM, you can straighten the motion of your robot.

1. With your robot programmed to travel full speed forward, detach the
programming cable and place the robot on the floor. NOTE: For the most
accurate results, find a level floor with a hard surface, rather than rug
or carpet.

2. Determine whether your robot is veering slightly to the right or slightly to
the left.

3. If your robot is veering to the left, reduce the speed of the right servo
motor. If your robot is veering to the right, reduce the speed of the left
servo motor. REMEMBER: Most variation in motor speed occurs near the
center point.

4. Once you have achieved reasonably straight motion in the forward
direction, reprogram your robot to travel in reverse, and
adjust the pulses to produce straight motion in the
reverse direction. Record all values in the Robot Data
Sheet.

Challenge 2: Make the XBot Move
Making Left and Right Turns

By turning the wheels in opposite directions, you can make your robot execute
turns. Although it is also possible to make turns by stopping one wheel and
rotating the other, you should make turns using both wheels. This way, your
robot turns in place, which will allow more precise navigation later on.

1. Change your code so that your robot turns to the right. This will require
driving the left wheel forward and the right wheel in reverse. Record these
values.

2. Change your code so that your robot turns to the left. This will require
driving the right wheel forward and the left wheel in reverse. Record these
values.

Field Goal

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 221

Challenge 2: Make the XBot Move
Executing Finite Movements and Turns

By now, you can make your robot travel forward and backward in a straight line,
turn right, and turn left, but these motions are all produced by infinite loops. For
precise navigation, you will need to execute finite movements and turns. This will
allow you to make several different movements within a single code file. For finite
movements, you will introduce a finite for... loop into your code. As you learned in
Getting Started, a for... loop repeats a section of code a specified number of
times, represented by a variable.

1. Using the Save As command, rename your code file fixed_motion.c.

2. Enter the following code into the Editor window:

// Program 11.4 Fixed Motion
// Left servo port 9, Right servo port 10
int i;

void setup() {
 pinMode(9, OUTPUT); //set up port 0 to output 5 volts
 for(i=0;i<200;i++){

 digitalWrite(9,1); // Program Left Motor
 delayMicroseconds(2000);
 digitalWrite(9,0);

 digitalWrite(10,1); // Program Right Motor
 delayMicroseconds(2000);
 digitalWrite(10,0);

 delay(20); //Run
 } // for
 }//setup

void loop() { }

3. Reprogram the microcontroller and observe the robot's movement. The
robot should move forward for approximately 5 seconds and then stop.

Challenge 2: Make the XBot Move
Controlling the Duration of Movements and Turns

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 222

Controlling the duration of movements is critical to making the robot do what you
want. For example, you could have the robot move forward for five seconds, turn
exactly 90 degrees to the left, and then continue on. The duration of the robot's
motion is determined by two factors: 1) the total duration of the pulses and
pauses in each loop, and 2) and the total number of times that the loop repeats.
For example, in fixed_motion.c, there are two pulses--a 2,000-microsecond (2-
ms) pulse to the left servo and a 1,000-microsecond (1-ms) pulse to the right
servo--and a 20-ms pause in each loop. This loop repeats 200 times. The total
duration of the motion can be calculated as follows:

duration of
motion

= (total duration of pulses and pauses) * (number of times loop
repeats)
= (2 ms + 1 ms + 20 ms) * 200
= (23 ms) * 200
= 4600 ms or 4.6 seconds

By adjusting the loop variable ("i"), you can change the duration of the robot's
motion.

1. Change the loop variable to produce a forward motion lasting 10
seconds.

2. Reprogram the robot to turn in place for 5 seconds.

Challenge 2: Make the XBot Move
Traveling a Specific Distance

In this step, you will program your robot to travel a specific distance: 24 inches
(61centimeters). Using some simple geometry, you can calculate exactly how
many pulses are needed to cover this distance. Each time the robot's wheels
make one complete turn, the robot travels a distance equal to the circumference
of the wheel, as shown in Figure 20. To make the robot travel a specific distance,
you must first determine how many pulses are needed for the wheel to rotate a
full 360 degrees, calculate the wheel's circumference, and then determine how
far the robot travels with every pulse that you send to the servo motors. This last
figure, your robot's distance-per-pulse ratio, will enable you to precisely control
forward and reverse movements.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 223

Figure 20. Wheel diameter, circumference, and distance traveled.

1. Put a small piece of tape on the outer edge of one of your robot's wheels.
This will make it easier to monitor the wheel's position.

2. Using trial and error, program the microcontroller as many times as
necessary to determine the number of pulses needed for a complete 360-
degree rotation of the wheel. Record your final result.

3. With a ruler, measure the diameter of one of your robot's wheels. You
can make this measurement in inches or centimeters, but be sure to record
your units, along with your result.

4. Using the following formula, calculate the wheel's circumference.
Remember that pi is equal to approximately 3.14. Record your result.

wheel circumference = wheel diameter * pi

5. Now that you know the wheel's circumference and the number of pulses
needed for a complete rotation of the wheel, you can calculate the distance
that your robot travels with every pulse, or its distance-per-pulse ratio.
Using the following formula, calculate the distance per-pulse-ratio, and
record your result.

distance-per-pulse ratio = wheel circumference / pulses needed for a 360-
degree wheel rotation

6. Finally, using the following formula, determine the number of pulses
needed for your robot to cover 24 inches (61 centimeters).

number of pulses = distance / distance-per-pulse ratio

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 224

7. Using the result of your calculation, program the robot to travel exactly
24 inches (61 centimeters).

Challenge 2: Make the XBot Move
Making a 90-Degree Turn

Your next task is to program the robot to make a 90-degree right turn. As with
any right turn, the left wheel will be moving forward, and the right wheel will be
moving in reverse. The number of pulses needed for a 90-degree turn can be
calculated using the distance-per-pulse ratio. In order to make this calculation,
you must first calculate your robot's turning circumference, which is the distance
that the wheels travel over the floor when the robot makes a complete 360-
degree turn. The turning circumference is determined by the distance between
the wheels, which is the diameter of the turning circumference. In a 90-degree
turn, each wheel covers one-quarter of the robot's turning circumference, as
shown in Figure 21.

Figure 21. Dimensions of the 90-degree turn.

1. With a ruler, measure the distance between your robot's wheels. This is
the diameter for the turning circumference. You can use either inches or
centimeters, but be sure to record your units, along with the measurement.

2. Using the following formula, calculate your robot's turning
circumference. Remember that pi is equal to approximately 3.14. Record
your result.

turning circumference = distance between wheels * pi

3. Using the following formula, calculate the number of pulses needed to
make a 90-degree right turn, and record your result.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 225

number of pulses = (0.25 * turning circumference) / distance-per-pulse ratio

4. Program your robot to make the 90-degree turn.

5. Next try a 180-degree turn.

Challenge 2: Make the XBot Move
Navigating Fixed Patterns

By combining straight line movements with turns, you can program your robot to
navigate a fixed pattern on the floor. You will have to create a separate loop for
each required motion.

1. Program your robot to trace the following figure on the floor. Try to
complete the figure without using trial and error.

2. Program your robot to trace the following figure on the floor. Again, try
to complete the figure without using trial and error.

Challenge 3: Write a Move Function

By now, you have learned to execute forward and reverse
movements, make right and left turns, and navigate simple patterns
using sequences of finite loops. This approach requires many lines of
code per movement or turn, and it would quickly become

cumbersome if you wanted to make the robot navigate a complex pattern
involving many turns and movements. Fortunately, there is a simpler way to
program the XBot's movements, using functions. In this challenge, you will write
a function, called move, that will greatly simplify robot navigation.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 226

Challenge 3: Write a Move Function
About the Move Function

In C, functions allow you to execute a section of code repeatedly, without having
to repeat the code over and over. Instead, you simply define the function once,
and then you can execute the function whenever you need it, with a single line of
code. (Executing a function is usually referred to as "calling" the function.) A
useful feature of functions is that you can pass one or more variables to the
function, to control how the function operates.

Your move function will cause the XBot to execute a turn or a movement every
time you call the function. You will pass three variables to the move function--the
first variable determines the number of pulses sent to the servo, the second
variable determines the pulse duration to the left servo, and the third variable
determines the pulse duration to the right servo. So, for example, by typing the
following code, you would send a total of 150 pulses to each servo--with a pulse
length of 2,000 microcseconds to the left servo and a pulse length of 1,000
microseconds to the right servo.

move(150, 2000, 1000)

This would cause the robot to move at full speed for approximately three
complete revolutions of the wheel, covering about 25 inches. With the following
code, you would send a total of 20 2,000-microsecond pulses to the left servo
and 20 2,000-microsecond pulses to the right servo.

move(20, 2000, 2000)

This would cause the XBot to rotate in place for a total of 20 pulses--roughly a
90-degree turn.

Challenge 3: Write a Move Function
Setting Up the Move Function

Recall that every C function has three parts:
* A return value. Since the move function has no return value, you will put "void"
here as a placeholder. In later units, you will use functions with return values.
* A function name, which can be anything you like--in this case, your function will
be called "move."
* Arguments, which are the variables that you pass to the function. The move
function will have three variables--"count", "left_pulse", and "right_pulse."

1. Using the Save As command, rename your file move_functions.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 227

2. Set up the move function at the bottom of your code file, and the
program at the top:

// Program 11.5 Move Function
// Left servo port 9, Right servo port 10
int i;

void setup() {
 pinMode(9, OUTPUT); //set up port 0 to output 5 volts
 pinMode(10, OUTPUT); //set up port 0 to output 5 volts

 move(100,2000,1000); //Call the move function
 move(200,2000,2000); //Call the move function

 }//setup

void loop() { }

//----------- MOVE Function --------------------
void move(int count, int leftPulse, int rightPulse){
 for(i=0;i<=count;i++){

 digitalWrite(9,1); // Program Left Motor
 delayMicroseconds(leftPulse);
 digitalWrite(9,0);

 digitalWrite(10,1); // Program Right Motor
 delayMicroseconds(rightPulse);
 digitalWrite(10,0);

 delay(20); //Run
 } // for
}

Every time you want to make the robot move, you can just call the move
function, as follows:

 move(#Times, Left motor pulse, Right motor pulse);

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 228

4. Reprogram the microcontroller and observe the XBot's movements.

Challenge 3: Write a Move Function
Using the Move Function

With your move function defined, navigating fixed patterns becomes much
easier. In this step, you will program the robot to retrace the figures from
Challenge 2. For each movement, you need only one extra line of code!

1. Using your move function, program your robot to trace the following
figure on the floor. Try to complete the figure without using trial and error .

2. Program your robot to trace the following figure on the floor. Again, try
to complete the figure without using trial and error .

Challenge 3: Write a Functions
to Simplify Your Code

Here is an example of a function that drives the robot forward.

// Program 11.7 Forward

// Left servo port 9, Right servo port 10

int i;

Box

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 229

void setup() {
 pinMode(9, OUTPUT); //set up port 0 to output 5 volts
 pinMode(10, OUTPUT); //set up port 0 to output 5 volts

 forward(100);

 }//setup

void loop() { }

//----------- MOVE Function --------------------
void move(int count, int leftPulse, int rightPulse){
 for(i=0;i<=count;i++){

 digitalWrite(9,1); // Program Left Motor
 delayMicroseconds(leftPulse);
 digitalWrite(9,0);

 digitalWrite(10,1); // Program Right Motor
 delayMicroseconds(rightPulse);
 digitalWrite(10,0);

 delay(20); //Run
 } // for
}// move

//----------- Forward Function --------------------
void forward(int count){
 int leftPulse = 2000; // change these to straighten robot tracking
 int rightPulse=1000;

 for(i=0;i<=count;i++){

 digitalWrite(9,1); // Program Left Motor
 delayMicroseconds(leftPulse);
 digitalWrite(9,0);

 digitalWrite(10,1); // Program Right Motor
 delayMicroseconds(rightPulse);
 digitalWrite(10,0);

 delay(20); //Run

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 230

 } // for
}// forward

Write the following functions: reverse, left90 and right90, then
program a solution for the Zig Zag puzzle.

An array is an ordered list of two or more values that is
assigned a specific name. By adding arrays to your code, you can make the
move function even simpler to use. For example, you can create an array to store
the pulse lengths required for forward motion and call it "forward." Likewise, you
could create an array called "spin_right" to store the pulse lengths that make the
XBot spin right. Then, in order to move the XBot forward for 50 pulses and make
it turn right for 25 pulses, you could use the following code:

move(50, forward);

move(25, spin_right);

To set up an array, you need to:
* Declare the types of values in the array. Just as when you declare a variable,
you must specify what types of values the array will store.
* Name the array. In the examples given above, the arrays were named "forward"
and "spin_right," but you can use any name you want.
* Define the size of the array. The arrays used with the move function must store
two values--the pulse width for the left servo and the pulse width for the right
servo--so they have a size of two.
* List the values in the array. These are the pulse width values that will make the
robot execute the desired movement or turn.

For example, to set up an array called "forward," with a size of two, and the
values 2,000 and 1,000, you would use the following code:

Challenge 3: Write a Move Function
Putting Arrays to Work

Box

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 231

In this step, you will set up four arrays, called forward, spin_right, reverse, and
spin_left.

1. Using the Save As command, rename your code file move_arrays.c.

2. Modify your code, setting up four arrays, as follows. HINT: The lines
setting up your arrays should go between your include statements and the
start of your move function. For the forward and reverse arrays, use
whatever values produce straight motion in your robot.

// Program 11.6 Array
// Left servo port 9, Right servo port 10

int forward[2] = {2000,1000};
int spin_right[2] = {2000,2000};
int reverse[2] = {1000,2000};
int spin_left[2] = {1000,1000};

int i;

3. Next, modify your move function, so that it passes a variable called
count for the cycles, and a variable called pulsewidth for the values of the
array.

//----------- MOVE Function --------------------
void move(int count, int pulse[]){
 for(i=0;i<=count;i++){

 digitalWrite(9,1); // --- Program Left Motor
 delayMicroseconds(pulse[0]);
 digitalWrite(9,0);

 digitalWrite(10,1); // --- Program Right Motor
 delayMicroseconds(pulse[1]);
 digitalWrite(10,0);

 delay(20); //Run
 } // for

}// move

4. Now, in your setup function, to execute a move, you can use your arrays.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 232

void setup() {

 pinMode(9, OUTPUT); //set up port 0 to output 5 volts
 pinMode(10, OUTPUT); //set up port 0 to output 5 volts

 move(10, spin_right);
 move(70, forward);
 move(70, reverse);
 move(30, spin_left);

 }//setup

void loop() { }

5. Change the arrays in your move statements to make the
robot move in different ways.

Challenge 3: Write a Move Function
Writing More Arrays

Moving forward, spinning right, spinning left, and moving in reverse are just a few
of the many movements that you can make with your robot. Why stop there?
Using arrays, you can store the pulse lengths needed for a wide array of
movements, including the following:

 Slow forward motion. Both wheels turn forward slowly. (Suggested name:
slow_forward).

 Slow reverse motion. Both wheels turn backwards slowly. (Suggested
name: slow_reverse).

 A bend to the right. The left wheel turns forward and the right wheel stops
or turns more slowly. (Suggested name: bend_right).

 A bend to the left. The right wheel turns forward and the left wheel stops or
turns more slowly. (Suggested name: bend_left).

Challenge 3: Write a Move Function
A Navigational Challenge

1. Calculate the number of pulses needed for all of the movements
shown in the course shown below. NOTE: Except where marked, all
turns are 90 degrees.

Slalom

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 233

2. Using your arrays, write code to make your robot navigate the
course, beginning and ending at the same point.

Challenge 3: Write a Move Function
More Challenges

If you have finished with all of the tasks in this unit, try tackling
some of the additional challenges in this section.

1. Imagine that you have to parallel park your XBot on the
street. Set up obstacles on the floor to simulate a parking
spot on the street, and program your XBot to drive up to
the spot, and park without touching other cars. Use Figure
22 as a reference.

Figure 22. The basics of parallel parking.

2. By adjusting your pulse durations, program the XBot to trace a circle on
the floor.

Parallel Park

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 234

3. Look closely at the Roomba navigation pattern shown in
Figure 23. The pattern starts out with a spiral motion,
traveling in expanding circles. Program the XBot to trace a
similar spiral pattern.

Figure 23. Roomba navigation pattern.

Spiral

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 235

Sensor Robot

In order to move around without becoming stuck or damaged, a mobile robot
needs to monitor and respond to its environment. This ability is made possible by
sensors, which send signals to the microcontroller, triggering certain navigational
responses. Figure 1 shows a robot equipped with sensors.

Figure 1. Sensor robot.

The sensor robot project has two challenges. In Challenge 1, you will add two
types of sensors to the robot--a front sensor that will keep the robot from
bumping into walls and objects in its path, and two down-facing sensors that will
keep the robot from falling down stairs or off tables. In Challenge 2, you will
program the robot to execute an avoidance maneuver in response to each
sensor.5

Challenge 1: Install the Sensors

5
 There are a couple of variants for the IR sensor. There are IR sensors with three or four pins. The version of the

four pins allows you to digital values as well as analog values. IR sensors with three pins usually are only digital.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 236

In this challenge, you will add two types of sensors to the robot--a
front sensor that will keep the robot from bumping into walls and
objects in its path, and two down-facing sensors that will keep the
robot from falling down stairs or off tables. Both sensors use infrared

light to detect the presence or absence of objects and surfaces.6

Challenge 1: Install the Sensors
Collecting Your Components

In order to add sensors to your robot, you will need the following components
(shown in Figure 2):

Part Quantity Description

A 1 Sharp infrared sensor (front sensor)

B 2 Infrared reflectance sensors (down-facing sensors)

C 2 Machine screws, round head slotted (1/2" 4-40)

D 2 Machine screw nuts (4-40)

E 2 Nylon standoffs (3/8" 4-40)

F 2 Nylon screws (4-40)

G 2 Nylon nuts (4-40)

H 3 Bent connectors (three-prong)

I 6 Jump wires (3 short yellow, 3 short orange)

J 3 Flexible jump wires (1 white, 1 red, 1 yellow)

6
 An IR LED and a Photo diode are used in a combination for proximity and color detection. An IR LED (transmitter)

emits IR light, that light gets reflected by the object, the reflected light is received by an IR receiver (Photo Diode).
Amount of reflection and reception varies with the distance. . This difference causes to change in input voltage
through IR input. This variation in input voltage is used for proximity detection.
https://roboindia.com/tutorials/digital-analog-ir-pair-arduino/

https://roboindia.com/tutorials/digital-analog-ir-pair-arduino/

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 237

Figure 2. Components for sensor robot.

NOTE: Some of the components shown in Figure 2, including the jump wires and
bent connectors, are contained in the Breadboard Starter Kit. Older Sensor
Expansion Packs may contain different sensor equipment. If the sensors in your
kit do not match those shown in Figure 2, you will have options that you can click
that will take you to instructions for your equipment.

Challenge 1: Install the Sensors
Identifying Your Front Sensor

Before moving ahead, carefully inspect the code printed on the bottom of the
front sensor, referring to Figure 3. If you have the newer analog sensors, you
may proceed with the instructions in this tutorial.

Figure 3. Identifying analog and digital front sensors.

GP2Y0A21K0F or

 or GP2D12F

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 238

IMPORTANT!
Before proceeding with the instructions in this tutorial, you must identify the type

of sensors included in your kit. Failure to do so will result in the sensors
malfunctioning, and it could cause permanent damage to the sensor hardware.

Connecting the Front Sensor (Digital Version)

If you have the analog sensor, hold Ctrl and Click HERE to go to the analog version.

The front-facing sensor is mounted to the front of the chassis. It is best to position the
sensor on the lowest slot on the chassis, so that the sensor doesn't miss small
obstacles in the robot's path.

1. Using two ½" 4-40 machine screws and two 4-40 machine screw nuts, secure
the sensor to the lowest slot on the front of the chassis, as shown in Figure 3.
NOTE: Make sure that the colored wires protrude from the top of the sensor, as
shown.

2. Check to make sure that the sensor is directly centered in the slot before
tightening the screws.

Figure 4. Securing front-facing sensor to chassis.

3. Insert a flexible red jump wire, a 10,000-Ohm resistor, a three-prong bent
connector, a short yellow jump wire, and a short orange jump wire into the
XBoard, as shown in Figure 5.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 239

Figure 5. Wires for front-facing sensor.

4. Thread the wire harness from the front-facing sensor through the front
panel of the chassis and up through a slot in the top of the chassis. NOTE:
The wire can be routed however you want, provided it stays clear of the
front caster and reaches the three-prong connector.

5. Connect the wire harness to the three-prong connector, as shown in
Figures 6 and 7. NOTE: Be sure to align the colored wires exactly as
shown.

Figure 6. Connecting the older-style sensor leads to the bent three-prong

connector. Red goes to power; black to ground; yellow to resistor.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 240

Figure 7. Connecting the newer-style sensor leads to the bent three-prong

connector. Purple=Red(+5v), Blue=Black (gnd), Green=Yellow (Signal)

5. (Digital Version) Connect the free end of the flexible jump wire to Port
A4 on the microcontroller.

Challenge 1: Install the Sensors
Installing the Front-Facing Sensor

The front-facing sensor is mounted to the slots on the front of the chassis.

1. Using nylon standoffs, screws, and nuts, secure the sensor to the front
of the chassis, as shown in Figure 8. NOTE: Make sure that the standoffs
insulate the sensor from the chassis.

2. Check to make sure that the sensor is directly centered in the slot before
tightening the standoffs and screws.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 241

Figure 8. Securing front-facing sensor to chassis.

Challenge 1: Install the Sensors
Attaching the Analog Front Sensor

An IR (Infrared) distance sensor uses a
beam of infrared light to reflect off an
object to measure its distance. The
distance is calculated using
triangulation. Sharp7 analog IR sensors,
the kind we have in our lab, produces an
analog output that varies from 3.1V at
10cm to 0.3V at 80cm. Because this
sensor uses angles to calculate distance,
it suffers from two limitations. The farther
the object is, the less accurate the reading
is, and objects can be too close for the
triangulation to work. See the graph of voltages vs distance to the right.8

Attach the front sensor as shown in Figure 9 below.

The right most wire, green in this picture, goes to the microcontroller. The center
wire, blue in this picture, should be grounded. It will be wired to the blue holes
on your breadboard. The left most wire, purple in this picture will be attached by
a wire to power, the holes with the red line next to them on your breadboard.

7
 Sharp Corporation … is a Japanese multinational corporation that designs and manufactures electronic products, headquartered

in Sakai-ku, Sakai, Osaka Prefecture. Wikipedia
8
 Graph from: https://www.makerguides.com/sharp-gp2y0a21yk0f-ir-distance-sensor-arduino-tutorial/

https://www.makerguides.com/sharp-gp2y0a21yk0f-ir-distance-sensor-arduino-tutorial/

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 242

Figure 9. Front sensor wires.

Wiring the Sensors (Analog Front Sensor)

Each sensor is connected to the breadboard by a three-strand cable. Before
connecting the sensors, examine these cables. Each has a green or yellow
(signal) strand, a blue or black (ground) strand, and a purple or red (power)
strand. The order of these strands is critical to the proper functioning of the down
sensors, although the color of the wires may be different.

1. Connect the cables from the three sensors to the breadboard using three
bent headers, three short orange jump wires, three short yellow jump
wires, and three flexible jump wires, as shown in Figure 10.

2. Insert a flexible jump wire, a three-prong bent connector, a short
yellow jump wire, and a short orange jump wire into the breadboard,
as shown in the Figure 10 below.

 + - Signal

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 243

Figure 10. Breadboard set-up for front sensor with yellow, black and red wires.

2. Connect the free end of the flexible jump wire to ANALOG Port A4

(connect the free end of the flexible jump wires from the downward sensors to
Port A1, and to Port A2, if you have wired the down sensors.) See Figure 11.

 Figure 11. Connecting flexible jump wires to microcontroller.

3. Testing your analog front sensor

In the testing program, you will use Arduino’s Serial.begin(),analogRead() and
Serial.print() functions to monitor the sensor’s readings from your computer.

1. Save your code as sharpir.

For each sensor,

green or yellow

goes to the chip,

blue or black

goes to ground,

and purple or red

goes to power

No Resistor Here

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 244

2. Type in the following program then run it.
3. While the program is running, run the serial monitor found in the tools tab.

4. In the real world, sensors vary in sensitivity, mountings are different, wires
have resistance; to make programming easy, make a table of sensor
values for objects at varying distances.

Distance IR Reading Distance IR Reading

10 cm 40 cm

15 cm 45 cm

20 cm 50 cm

25 cm 55 cm

//Sharp IR Sensor
int IR=0;

void setup() {
 Serial.begin(9600); // Set up Serial so computer will show values
 pinMode (A4,INPUT);
}
void loop() {

 IR = analogRead(A4);

 // Print the measured distance to the serial monitor:

 Serial.print(" IR reading -> ");
 Serial.println(IR);
 delay(100);
}
// To see the results, go to
// Tools,then Serial Monitor

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 245

30 cm 60 cm

35 cm 65 cm

If the circuit worked, continue on to install downward facing sensors.

Connecting the Down Sensors (Soldered Ribbon Cables)

If you have flat cables, click here for instructions.
If you have a WCS sensor, click here for instructions.

The down-facing sensors are attached to the front of the
chassis with machine screws. It is important to orient each
sensor properly, paying close attention to the position of the
infrared emitter (the side labeled E) and the infrared receiver or
sensor (the side labeled S).

1. Attach the left down-facing sensor to the front of the chassis, using two
½" 4-40 machine screws and nuts. Mount the sensors on the lowest slot, as
shown in Figure 1. NOTE: Make sure that the letters E and S are upside
down and facing you.

2. Repeat step 1 to attach the right down-facing sensor in the same slot on
the other side of the front sensor.

Figure 13. Securing the newer-style down-facing sensor to the chassis.

3. Connect the colored ribbon cables to the breadboard as shown in
Figure 14. NOTE: Be sure that the brown strand on each cable aligns
with the flexible jump wire and the 10K-Ohm resistor.

Figure 12 Soldered
Ribbon Cables

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 246

3. Connect the free end of the flexible yellow jump wire to Port B6, and
connect the free end of the flexible white jump wire to Port B5, as shown in
Figure 15.

Figure 15. Connecting flexible jump wires to the Arduino.

 10KΩ 220Ω Resistors Be sure the 10KΩ and jumper to the Arduino are
connected to the signal wire of the sensor.

Figure 14. Down-facing sensor connections completed

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 247

Challenge 1: Install the Sensors
Installing the Down-Facing Sensors

The down-facing sensors are attached to the
chassis with machine screws.

1. Attach the left down-facing sensor board
to the front of the chassis, using two ½" 4-
40 machine screws and nuts. Mount the
sensor on the lowest slot, as shown in
Figure 5.

2. Repeat step 1 to attach the right down-
facing sensor in the same slot on the other
side of the robot. Click HERE to continue.

Connecting the Down Sensors (Flat Flex Connections)

If you missed regular multicolored wires, click here for instructions.

If you have a WCS sensor, click here for instructions.

The down-facing sensors are attached to the front of the chassis with
machine screws. It is important to orient each sensor properly,
paying close attention to the position of the infrared emitter (the side
labeled E) and the infrared receiver or sensor (the side labeled S).

1. Attach the left down-facing sensor to the front of the chassis,
using two ½" 4-40 machine screws and nuts. Mount the sensors
on the lowest slot, as shown in Figure 18. NOTE: Make sure that
the letters E and S are upside down and facing you.

2. Repeat step 1 to attach the right down-facing sensor in the
same slot on the other side of the front sensor.

 Figure 16. Securing the down-
facing sensor board.

Figure 17 Flat Flex
Connections

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 248

Figure 18. Securing the older-style down-facing sensor to the chassis.

3. Connect the flat-flex cables to each sensor, as shown in Figure 19.
NOTE: For each sensor, orient the two flat-flex cables so that the dark
strands are facing towards the mounting screw and the red strands are
facing away from the mounting screw.

Figure 19. Two-color wires connected to down-facing sensors.

4. Insert two short yellow jump wires, a flexible white jump wire, a 10,000-
Ohm resistor, and a 220-Ohm resistor into the XBoard, as shown in Figure
20.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 249

Figure 20. Jump wires and resistors for down-facing sensor.

5. Connect the flat-flex cables from the left down-facing sensor to the four-
prong connector, as shown in Figure 21. NOTE: Make sure that the dark
strands align with the yellow jump wires, the red strand from the emitter
aligns with the 220-Ohm resistor, and the red strand from the receiver
aligns with the 10,000-Ohm resistor .

Figure 21. Plugging cables from sensor into the four-prong connector.

6. In the space on the breadboard between the left down-facing sensor
connection and the front sensor connection, repeat steps 3 and 4 to
connect the right down-facing sensor. Instead of yellow jump wires, use
short orange jump wires to make your connections to ground. Also, to
make it easier to keep your sensors straight, use a flexible yellow jump
wire, instead of a white one. When you have finished, your XBoard should
look like the one shown in Figure 22.

10K Ω
220 Ω

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 250

Figure 22. Older style down-facing sensor connections completed.

7. Connect the free end of the flexible jump wires to Port A2, connect the
other flexible jump wire to Port A1, as shown in Figure 23.

Figure 23. Connecting flexible jump wires to the Arduino

Hold down CTRL and click HERE to continue.

Connecting the down sensors (WCS sensor, the LTH1550-01)

If you have multicolored wires, click here for instructions.

If you have flat cables, click here for instructions.

The down-facing sensors are attached to the front of the
chassis by attaching it to a card and attaching the card to
your robor with machine screws. It is important to orient
each sensor properly. The red wire needs to be attached
to a 220 Ω resistor that goes to power. The blue wire
goes to the ground. The green wire needs to be

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 251

connected to the microcontroller and a 10K Ω resistor that is connected to power.
 Figure 24. LTH1550

Figure 25. Connecting flexible jump wires from the LTH1550

Attach a jump wire to the green signal wire and attach the other end to port A2 of
the microcontroller, as shown in figure 26.

Figure 26. Connecting flexible jump wires to the Arduino

Repeat the process for the sensor on the other side, and port A1.

Continue reading below:

Challenge 2: Avoid Obstacles and Hazards

 220Ω to power

 Red from LTH1550

 10KΩ to power

 Wire to microcontroller

 Green from LTH1550

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 252

With the sensors mounted and connected, you are ready to write
code to make the robot respond to input from the sensors. Your code
for this challenge will incorporate your move function and the arrays.
You will program the front sensor to keep the robot from bumping into

walls and other obstacles, and program the down-facing sensors to keep the
robot from falling down stairs or off tables. By modifying your code, you can also
program the down-facing sensors to make the robot track lines on the floor.

Challenge 2: Avoid Obstacles and Hazards
About Infrared Sensors

The sensors that you will use in this unit are infrared sensors. Each has an
infrared emitter that transmits a beam of infrared light and an infrared receiver
that detects when the beam bounces back to the sensor from an object. The
infrared light emitted from the sensor is a beam of electromagnetic radiation,
much like a flashlight beam, except that it is invisible to the eye. Figure 27 shows
how this infrared detection works.

Figure 27. Infrared object detection.

Challenge 2: Avoid Obstacles and Hazards
Using the Analog Front Sensor

For instructions on how to install your robot’s sensors, click HERE.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 253

The front sensor can detect objects at a distance of 5 to 150 centimeters
(approximately 2 to 60 inches). Depending on the object's distance from the
sensor, the sensor returns a value ranging from about 900 (the object is very
close) to about 30 (object is at the maximum detectable distance from the
sensor). When an object is extremely close to the sensor, the sensor cannot
detect it properly. Sensors that return values that are continuous over time, as
opposed to a discrete off/on, are called analog sensors.

1. Save your code file as stop.

2. Set up your move function, so the robot can move. Then, modivy the
code to make the robot respond to the front sensor:

// Program 12.3 Stop
// Left servo port 9, Right servo port 10, A4 IR sensor
int i;

void setup() {
 pinMode(9, OUTPUT); //set up port 0 to output 5 volts
 pinMode(10, OUTPUT); //set up port 0 to output 5 volts
 pinMode (A4,INPUT);

 while (analogRead(A4)<250) // move while no reflection
 { move(5,2000,1000); } //move forward for 5 cycles
 // ----- no movement instruction here so robot stops

 }//setup

void loop() { }

//----------- MOVE Function --------------------
void move(int count, int leftPulse, int rightPulse){
 for(i=0;i<=count;i++){

 digitalWrite(9,1); // Program Left Motor
 delayMicroseconds(leftPulse);
 digitalWrite(9,0);

 digitalWrite(10,1); // Program Right Motor
 delayMicroseconds(rightPulse);
 digitalWrite(10,0);

 delay(20); //Run
 } // for

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 254

}// move

2. Compile and test your new code. The robot should move in the forward
direction when there is no object in front of the sensor. When you place
your hand or another object within the sensor’s sight range (10 to 24
centimeters), the wheels should stop moving.

3. Try adjusting the sensor value that makes the robot stop. Larger values
will make the robot stop closer to an object; smaller values will make it
stop farther from an object.

Challenge 2: Avoid Obstacles and Hazards
Using Define Statements

With many ports in use, it is easy to get confused about which motor or sensor is
connected to which port. By adding define statements to your code, you can
store this information, so that you are less likely to mix up your ports. A define
statement allows you to give a specific name to a port. For example, you can call
Port 9 "right_motor," call Port 10 "left_motor," and call Port A2 "left_down," and
Port A1 “right_down.” That way, when you want to send a pulse to a motor or
read a value from a sensor, you can refer to the component by name without
having to remember which port it is attached to.

1. Using the Save As command, rename your code file sensor_defines.c.

2. Add define statements to your code to simplify programming, as follows:

#define left_motor 9
#define right_motor 10
#define left_down A2
#define right_down A1
#define front_sensor A4

These statements should go between the comments at the top of your
program and the void setup(); command.

3. Replace the port references in your move function, as follows:

//----------- MOVE Function --------------------
void move(int count, int pulse[]){
 for(i=0;i<=count;i++){

 digitalWrite(9,1); // Program Left Motor

Analog Sensor

Click here for digital sensor

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 255

 delayMicroseconds(pulse[0]);
 digitalWrite(9,0);

 digitalWrite(10,1); // Program Right Motor
 delayMicroseconds(pulse[1]);
 digitalWrite(10,0);

 delay(20); //Run
 } // for

}// move

 4. In your main function, replace the port references, as follows: 9

9
 Using define statements is good programming practice. If the program if the robot is rewired, just changing a

number in the define statement at the top changes everything throughout the program.

// Program 12.3 Stop
#define left_motor 9
#define right_motor 10
#define left_down A2
#define right_down A1
#define front_sensor A4

int forward[2] = {2000,1000};
int spin_right[2] = {2000,2000};
int reverse[2] = {1000,2000};
int spin_left[2] = {1000,1000};

int i;

void setup() {
 pinMode(right_motor, OUTPUT);
 pinMode(left_motor, OUTPUT);
 pinMode (front_sensor,INPUT);

 while (analogRead(front_sensor)<250) // move while no reflection
 { move(5,forward); } //move forward for 5 cycles
 // no movement instruction here so robot stops

 }//setup

void loop() { }

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 256

5. Compile and test your new code.

Challenge 2: Avoid Obstacles and Hazards
Using the Down Sensors

Although you will need both down-facing sensors to keep the robot from falling
down stairs or off a table, it is much simpler to program the sensors one at a
time. In this section, you will write code to for the left down-facing sensor. Your
code will be very similar to the code you used to program the front-facing sensor.
You have to set up each down-facing sensor port as an input, and use an if ...
else statement to make the robot's behavior hinge on the value sent by the
sensor.

1. To make it easier to remember which sensor you are trying to program in
this step, put a small piece of tape on the left down-facing sensor.

2. Rename your code file left.

3. Modify your main function to read from the left down-facing sensor, as
follows:

// Program 12.4 Left Downward Sensor

#define left_motor 9 // Change these if you wire to different ports
#define right_motor 10
#define left_down A2
#define right_down A1
#define front_sensor A4

int forward[2] = {2000,1000};
int spin_right[2] = {2000,2000};
int reverse[2] = {1000,2000};
int spin_left[2] = {1000,1000};

int i;

Stop

Show your work
to the instructor
for a grade.

Escape

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 257

void setup() {
 pinMode(right_motor, OUTPUT);
 pinMode(left_motor, OUTPUT);
 pinMode (front_sensor,INPUT);
 pinMode (left_down, INPUT);
 pinMode (right_down, INPUT);

 while (1==1){ // loop forever
 if (analogRead(left_down)>300){ //Doesn't see the floor
 move(10,reverse);
 move(10,spin_right); }
 else {
 move(1,forward);}
 }//while

 }//setup

void loop() { }

//----------- MOVE Function --------------------
void move(int count, int pulse[]){
 for(i=0;i<=count;i++){

 digitalWrite(9,1); // --- Program Left Motor
 delayMicroseconds(pulse[0]);
 digitalWrite(9,0);

 digitalWrite(10,1); // --- Program Right Motor
 delayMicroseconds(pulse[1]);
 digitalWrite(10,0);

 delay(20); //Run
 } // for
}// move

4. Compile and test your new code.

IMPORTANT!
Until you have both down-facing sensors properly programmed, there is a

danger of your robot falling off the table. BE SURE TO CATCH YOUR ROBOT
BEFORE IT FALLS!

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 258

If your robot keeps backing and turning, or does not respond when the sensor
has no surface under it, you can adjust it by raising or lowering the number 300.10

Challenge 2: Avoid Obstacles and Hazards
Using Both Down Facing Sensors

In order to prevent the robot from falling off the table, you need to modify the
language of your if...else if... statement to gather input from both sensors.

1. Rename your code file both_sensors.c.

2. Modify the if ... else statement in your main function, as follows:

// Program 12.6 LeftRight Left and Right Downward Sensor

#define left_motor 9
#define right_motor 10
#define left_down A2
#define right_down A1
#define front_sensor A4

int forward[2] = {2000,1000};
int spin_right[2] = {2000,2000};
int reverse[2] = {1000,2000};
int spin_left[2] = {1000,1000};

int i;

void setup() {
 pinMode(right_motor, OUTPUT);
 pinMode(left_motor, OUTPUT);
 pinMode (front_sensor,INPUT);
 pinMode (left_down, INPUT);
 pinMode (right_down, INPUT);

 while (1==1){ // loop forever

10

 There are three things you can do to change the downward sensor’s response to the surfaces it moves across.
First, raising the number in the IF statement will make it more sensitive; lowering it will make it less sensitive.
Second, you can also raise or lower the sensor itself. Lowering it makes it more sensitive, raising it makes it less
sensitive, but if you raise it too much or lower it too much it will stop working. The ideal height is roughly one-

eighth of an inch, or 4 to 5 millimeters. Third, you can also change the 220 resistor. Lowering it makes the

sensor more sensitive, but do not go below 100s.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 259

 if (analogRead(left_down)>300){ //L Doesn't see the floor
 move(10,reverse);
 move(10,spin_right); }

 else{ // not left_down
 if (analogRead(right_down)>300){ //R Doesn't see the floor
 move(10,reverse);
 move(10,spin_left); }

 else { // not right_down and left_down
 move(1,forward);}

 }// else not left_down

 }//while

 }//setup

void loop() { }

//----------- MOVE Function --------------------
void move(int count, int pulse[]){
 for(i=0;i<=count;i++){

 digitalWrite(9,1); // --- Program Left Motor
 delayMicroseconds(pulse[0]);
 digitalWrite(9,0);

 digitalWrite(10,1); // --- Program Right Motor
 delayMicroseconds(pulse[1]);
 digitalWrite(10,0);

 delay(20); //Run
 } // for
}// move

3. Compile and test your new code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 260

Challenge 2: Avoid Obstacles and Hazards
Adjusting the Sensitivity

The sensitivity of some down sensors can be adjusted, using their on-board
potentiometer, as shown in Figure 9. Turning the dial counterclockwise makes
the device more sensitive, and turning it clockwise makes it less sensitive. The
red LED glows to indicate when the device does not “see anything,” meaning it is
sending a LOW signal to the microcontroller. The sensitivity adjustment can be
important when programming the sensor to detect the difference between light
and dark colors.

Figure 9. Adjusting the sensitivity of the down-facing sensor.

Big S

Show your work
to the instructor
for a grade.

LeftRight

Show your work
to the instructor
for a grade.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 261

Challenge 2: Avoid Obstacles and Hazards
Using All Three Sensors

By combining input from the front sensor and the down-facing sensors, you can
program the robot to perform more sophisticated behaviors. For example, in this
section, you will program the robot to track the line, but to stop if it encounters an
object in its path.

1. Rename your code file all_sensors.c.

2. Modify your code to incorporate input from the front sensor, as follows:

void main(void)

{

 left_motor_dir=0;

 right_motor_dir=0;

 left_down_dir=1;

 right_down_dir=1;

 adc_init(ALL_ANALOG);

 while(1==1)

 {

 if(right_down==1)

 {

 move(10,reverse);

 move(10,spin_left);

 }

 else if(left_down==1)

 {

 move(10,reverse);

 move(10,spin_right);

 }

 else if(adc_read(0)>250)

 {

 move(100,stop);

 }

 else

 {

 move(1,forward);

 }

 }

}

3. Compile and test your new code.

Challenge 2: Avoid Obstacles and Hazards
Tracking a Line

Analog Sensor

For Digital
Replace these

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 262

The down-facing sensors have an interesting characteristic--they can't see dark
colors very well. This is because infrared light does not reflect very well off of
dark-colored surfaces. As a result, if you put a strip of black electrical tape down
on the table, the robot will mistake it for the edge of the table. Using this feature,
you can program the robot to track a line. Before starting this section, establish a
continuous line on a white or light-colored, reflective surface, using black
electrical tape. The line can have curves and bends, but it should not have any
bend sharper than 90 degrees.

1. Rename your code file line_tracker.c.

2. Modify your code to so that the robot tracks the line, making minor
adjustments to its course whenever it detects the line. HINT: The direction
of the robot's turning maneuver will be the opposite of the direction needed
for table edge/stair avoidance. To avoid confusion, you may want to add
define statements for SEE_LINE and NOT_SEE_LINE.

3. Compile and test your new code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 263

Remote Control Robot

Although mobile robots are capable of moving around and responding to their
environment autonomously, it can be useful to control a robot's behavior directly,
using a remote control. Figure 1 shows a mobile robot, with a remote control.

Figure 1. Remote control robot.

In this project, you will add a component to the XBot to receive signals from a
remote control, and then program the microcontroller to decipher these signals.
This will allow you to control the robot directly, executing forward and reverse
motions and right and left turns. This project has two challenges--adding the
infrared sensor and programming the remote control functionality.

Challenge 1: Set Up the Receiver and the Remote

Mobile Robot Unit 3 begins with a hardware challenge--adding the
infrared receiver to the XBoard to receive signals from the remote
control. The installation of the receiver is very simple. It has three
prongs that connect to power, ground, and the microcontroller. In this

challenge, you will also set up the universal remote control for your robot.

Challenge 1: Set Up the Receiver and the Remote
Collecting Your Components

In order to complete this unit, you will need the following components (shown
below in Figure 2):

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 264

Part Quantity Description

A 1 Infrared receiver

B 2 Jump wires (1 yellow and 1 orange)

C 1 Flexible jump wire

D 1 Programmable remote control

Figure 2. Remote control pack components.

Challenge 1: Set Up the Receiver and the Remote
Identifying Your Infrared Receiver

Remote Control Expansion Packs shipped before December 2010 have a
Panasonic infrared receiver. Packs shipped after December 2010 have a
Toshiba receiver. The two parts (shown in Figure 3) differ only slightly in
appearance, but they are wired differently, so be sure to identify your receiver
before proceeding to the next step.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 265

Figure 3. Panasonic (left) and Toshiba (right) infrared receivers.

Challenge 1: Set Up the Receiver and the Remote
Installing the Infrared Receiver

1. Using pliers, gently bend a 90-degree angle in the three prongs on the
infrared receiver, as shown in Figure 4.

Figure 4. Bending the prongs of the infrared receiver.

2. Insert the infrared receiver, a short yellow jump wire, a short orange
jump wire, and a long flexible blue jump wire into the XBoard, as shown in
Figure 5. Note that the polarity of the two types of receivers is reversed.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 266

Figure 5. Installing the Toshiba (left) and Panasonic (right).

3. Connect the loose end of the flexible jump wire to Port B4 on the
microcontroller.

Challenge 1: Set Up the Receiver and the Remote
Setting Up the Remote

In order to use the remote control, you must first install batteries in the device
and program it with the correct TV code. The procedure to do this is different for
every remote. Below are the instructions to program several remote controls that
have been included in Machine Science robot kits.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 267

Figure 6. Four different types of remotes, with Sony TV code.

For the Radio Shack 3-in-1 Remote Control, use the following procedure:

1. Press and hold the CODE SEARCH button on the remote control until the
red indicator stays on.

2. Press the TV button. The red indicator light should blink and then stay lit.

3. Press the 4 button, then the 1 button, then the 4 button. The red light
should go off. If it stays lit, repeat steps 2, 3, and 4.

For the Aifa URC4 Remote, use the following procedure:

1. Press the green SET button on the remote control and hold it while
pressing the TV button.

2. When the red indicator light comes on, release both buttons. The red
light should stay on.

3. Press the 1 button, then the 2 button, then the 8 button. The red light
should go off. If it stays lit, repeat steps 2, 3, and 4.

For the Philips Universal Remote, use the following procedure:

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 268

1. Insert two AAA batteries in the remote control, as shown above in Figure
5. Batteries are not included with Remote Expansion Pack.

2. Press the CODE SEARCH button and hold it down until the red LED
stays lit.

3. Press the 0 button, then the 4 button, then the 1 button, then the 4
button. The red light should go off. If it stays lit, repeat steps 1 and 2.

For the RCU-4450 remote, use the following procedure:

1. Press the CODE SEARCH button and hold it down until the red LED
stays lit.

2. Press and release the TV button.

3. Press the 0 button, then the 0 button again, then the 2 button. The red
light should go off. If it stays lit, repeat steps 1 to 3.

For the Unmarked remote, use the following procedure:

1. Press the CODE SEARCH button and hold it down until the red LED
stays lit.

2. Press and release the TV button.

3. Press the 0 button, then the 0 button again, then the 2 button. The red
light should go off. If it stays lit, repeat steps 1 to 3.

Challenge 2: Control the Robot

In this challenge, you will write code to decipher signals from the
remote control, and then program the XBot to respond to these
signals. First, you will learn how infrared communication works, using
a standard universal remote control (for TVs, VCRs, and cable

boxes). Then, you will write code so that your XBot's infrared receiver can
receive and decipher the remote control's coded signals.

Challenge 2: Control the Robot
About Remote Controls

The XBot's remote control is a standard universal remote for home electronic
devices, such as TVs, VCRs, and cable boxes. (This type of remote can be

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 269

purchased at any electronics store for about $10). When you push a button on
the remote, it sends a coded, infrared signal to your TV, VCR, or cable box, as
shown in Figure 7. These electronic devices have infrared receivers, which relay
the signals from the remote to a microcontroller. The microcontroller decodes the
signals and then initiates tasks, such as adjusting the volume on the TV,
switching the VCR to fast-forward, or flipping the channel on the cable box from
CNN to HBO.

Figure 7. Infrared remote control.

Each of the major electronics companies has its own scheme for encoding the
infrared signals sent out by their remotes. A universal remote can emulate the
encoding scheme used by almost any remote control. When you set up the
universal remote in the previous step, you were programming it to use Sony's
infrared encoding scheme for TVs. This means that most Sony TV remote
controls will control your XBot as well as the universal remote supplied in this kit.

Challenge 2: Control the Robot
About the Sony Encoding Scheme

In the Sony encoding scheme, the signal from the remote control is not a
continuous beam of infrared light--it is a series of intermittent short and long
pulses. The receiver translates these short and long pulses into periods of high
voltage (5 volts) and low voltage (0 volts), which the microcontroller interprets as
1s and 0s. Figure 8 shows how this works.

Figure 8. Translating infrared pulses into 1s and 0s.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 270

The pulses from the infrared emitter are sent in batches, with 13 pulses in each
batch. The first pulse is a "start" pulse, which signals that a batch is starting.
Each of the next 12 pulses is either long or short, with long pulses representing
1s and short pulses representing 0s. If you look closely at Figure 8, you will
notice that, after the start pulse, the infrared receiver sends a high voltage signal
for every long pulse it receives and a low voltage signal for every long pulse it
receives. The microcontroller then interprets these signals as 1s and 0s,
respectively, and arranges them into 12-digit strings, such as 001010101101.
Notice that the order of the 1s and 0s is the reverse of the order of the infrared
pulses.

Challenge 2: Control the Robot

About Binary Numbers

To the microcontroller, every string of 1s and 0s has a specific meaning: it
represents a binary number. Binary is a system of counting used by computers.
Binary counting differs from our usual way of counting in one important respect--
binary uses only two digits: 1 and 0. The number system we commonly use is
called the decimal system, and it is based on 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and
9. We can use these 10 digits to represent any number we want--from single-digit
numbers, like 3 and 7, to multi-digit numbers, like 685.

Each digit in a multi-digit decimal number has a different value, depending on its
place in the number. For example, in the number 685, the digit 6 is in the
hundreds place, meaning it has a value of 600. The digit 8 is in the tens place,
and has a value of 80. The 5 is in the ones place, and has a value of 5. This is
represented schematically below:

Seems obvious, doesn't it? You are so used to seeing decimal numbers, you
probably don't realize that you are performing a calculation each time you see
one, but you are!

Likewise, each digit in a binary number has a different value, depending on its
place. The value of each digit is based on a power of 2, rather than a power of

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 271

10. For example, consider the first string of 1s and 0s sent to the microcontroller
from the infrared receiver in the previous section--001010101101. The value of
this binary number can be calculated, as follows:

As it turns out, the decimal number 685 and the binary number 001010101101
have the same value. This many seem confusing, but the important thing to
remember is that any number can be represented in binary, using just 1s and 0s,
and any binary number can be easily converted into a decimal number, using the
process shown above.

Challenge 2: Control the Robot
Printing a Remote Data Sheet

In the next step, you will be asked to record important data about the signals sent
from the remote control. By recording this information on paper, you will be
creating a data sheet for your remote control, which will be a useful reference for
future activities.

1. Click here to open a printable version of this page in PDF format. You
will need the Acrobat Reader from Adobe to view the PDF.

2. Select the Print option to print this page.

REMOTE CONTROL

Button Number Displayed on LCD

UP ARROW (CHAN+)

DOWN ARROW (CHAN-)

LEFT ARROW (VOL-)

RIGHT ARROW (VOL+)

1

2

3

4

http://www.machinescience.org/02/editor/data/files/RemoteDataSheet.pdf/download
http://www.adobe.com/products/acrobat/readstep2.html

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 272

5

6

7

8

9

Challenge 2: Control the Robot
Displaying Data from the Remote on the LCD

In effect, when you press a button on the remote control, you are sending a
specific number to the microcontroller. The microcontroller's code determines
what the device will do each time it receives this number. In the next section, you
will program the robot to move in various ways, based on the number it receives.
As a first step, you will program the microcontroller to convert the binary number
it is receiving to decimal, and display the decimal number on the LCD.

1. Launch the Programming Portal, create a new code file, and save it as
remote_lcd.c.

2. Enter the following code into the Editor window:

#include "mxapi.h"

void main(void)

{

 int button; //Declare a variable, called button

 button=0; //Set button equal to 0

 lcd_init(); //Initialize the LCD

 while(1==1)

 {

 button=remote(); //Set button equal to value from remote

 if(button!=0)

 {

 lcd_instruction(CLEAR); //Clear LCD

 lcd_decimal(button); //Display button value on LCD

 button=0; //Set button equal to 0

 }

 }

}

3. Compile and test your new code.

Challenge 2: Control the Robot
Controlling the XBot with the Remote

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 273

Now that you know how to decode the infrared signals being sent to the
microcontroller, programming the XBot to respond to the remote control is
relatively simple. You need to add an if...else statement to your code, which uses
input from the remote control in a conditional statement. Remember that, in the
previous unit, you used if...else statements to program the XBot to respond to
input from infrared sensors. (For more information on if... else statements, see
the Quick Reference: Programming document.)

1. Using the Save As command, rename your code file remote_forward.c.

2. At the top of your code file, add your include statements, your define
statements for the left and right motors, and the move function for your
robot.

3. In your main function, add an if...else statement, as follows:

void main(void)

{

 int button;

 button=0;

 right_motor_dir=0;

 left_motor_dir=0;

 while(1==1)

 {

 button=remote();

 if(button==144)

 {

 move(20,forward);

 }

 else

 {

 move(10,stop);

 }

 }

}

4. Compile and test your new code.

Challenge 2: Control the Robot
Adding More Controls

With three more conditional statements, you can program the XBot to respond to
other directional commands, backing up, turning right, and turning left.

1. Using the Save As command, rename your code remote_robot.c.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 274

2. In your main function, add more conditional statements, as follows:

void main(void)

{

 int button;

 button=0;

 right_motor_dir=0;

 left_motor_dir=0;

 while(1==1)

 {

 button=remote();

 if(button==144)

 {

 move(20,forward);

 }

 else if(button==2192)

 {

 move(20,reverse);

 }

 else if(button==1168)

 {

 move(20,spin_right);

 }

 else if(button==3216)

 {

 move(20,spin_left);

 }

 else

 {

 move(10,stop);

 }

 }

}

3. Compile and test your new code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 275

Using DC Motors

With a few modifications, your robot can be set up to be run on DC motors,
instead of the servo motors included with the Mobile Robot Base Kit. In the field
of hobby robotics, the term "DC" is often used to distinguish these motors from
servo motors, but in fact, servo motors are just another type of DC motor, with
internal circuitry that enables precise control of the motor's axle. The term DC
motor applies to any motor that draws direct current from a battery, rather than
the alternating current that drives the motors in household appliances, such as
ceiling fans. Figure 1 shows a DC motor.

Figure 1. DC motor.

Challenge 1: Mount the Motors

The first challenge is to mount the DC motors on your robot chassis. Each motor

requires a custom mounting bracket, made of PVC foamboard, which affixes the

motor to your stock or custom robot frame.

Challenge 1: Mount the Motors
Collecting Your Components

In order to mount the DC motors, you will need the following components, shown in Figure 2:

Part Quantity Description

A 2 DC motors (BaneBot)

B 1 PVC foamboard (3mm sheet)

C 8 Machine screws (1/2" 4-40)

D 4 Machine screws (3/8" 4-40)

E 8 Machine screw nuts (4-40)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 276

Figure 2. Components for mounting DC motors.

Challenge 1: Mount the Motors
Mounting Motors on the Stock Frame

Some chassis have pre-drilled holes that accept the BaneBot motors. These
holes, located just forward of the servo mounting area, make it very easy to
install the DC motors. Simply secure each motor in place, using 4-40 machine
screws.

If your chassis does not have the mounting holes, you must create a mounting
bracket, which attaches to the outside of the chassis, covering the rectangular
openings for the servo motors. A printable template for this bracket can be found
here.

1. If you have already built a robot with the stock frame, remove the servo
motors and their associated electronic components (the six-prong bent
connector and red jump wires connecting the motors to Ports B0 and B3).

2. Cut two rectangular pieces of PVC foamboard, each measuring 1.5
inches by 2.5 inches.

3. Using the robot chassis or the printed template as a guide, mark the
position of the four servo mounting screw holes on each rectangular piece
with the tip of a screwdriver.

4. On each piece, drill holes for the 4-40 screws at each of the four marked
positions and check to make sure these align with the holes on the

http://guides.machinescience.org/file.php/29/DC/Motor_Bracket_Templates.pdf

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 277

chassis.

5. Measuring from corner to corner, determine the precise center point of
each mounting bracket and mark this position with the tip of a screwdriver.

6. In the center of each rectangle, drill a hole; at least 11/64-inch in
diameter; to accommodate the axle of each DC motor.

7. On either side of the axle hole, carefully mark the position of the holes
for the motor mounting screws and drill holes there for two 4-40 screws.
Each bracket should look like the one shown in Figure 3.

Figure 3. Motor mounting bracket for stock frame.

8. Use 1/2-inch screws to secure each bracket to the outside of the chassis,
and then use 3/8-inch screws to secure the motors to the brackets.

Figure 4. Motor mounted on stock frame.

Challenge 1: Mount the Motors
Mounting Motors on the Custom Frame

The mounting bracket for the custom frame attaches to the main platform, using
the same two angle brackets used to secure the servo motor bracket.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 278

1. If you have already built a custom robot, remove the servo motor
mounting brackets, the servo motors, and their associated electronic
components (the six-prong bent connector and the red jump wires
connecting the motors to Ports B0 and B3). Leave the angle brackets in
place on the main platform.

2. Cut two rectangular pieces of PVC foam board, each measuring 1.5
inches by 2.5 inches.

3. Using the servo mounting brackets or the printed template as a guide,
mark the position of the two angle bracket mounting screw holes on each
rectangular piece.

4. On each piece, drill holes for the 4-40 screws at each of the two marked
positions and check to make sure these align with the angle brackets.

5. Measuring from corner to corner, determine the precise center point of
each mounting bracket and mark this position with the tip of a screwdriver.

6. In the center of each rectangle, drill a hole; at least 11/64-inch in
diameter; to accommodate the axle of each DC motor.

7. On either side of the axle hole, carefully mark the position of the holes
for the motor mounting screws and drill holes there for two 4-40 screws.
Each bracket should look like the one shown in Figure 5.

Figure 5. Motor mounting bracket for custom frame.

8. Use two 1/2-inch screws to secure each bracket to the angle brackets on
the main platform, and then use 3/8-inch screws to secure the motors to
the mounting brackets, as shown in Figure 6.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 279

Figure 6. Motor mounted on custom frame.

Challenge 2: Wire the Motors

The next step is to establish electrical connections between the DC
motors and the microcontroller. Since the DC motors can draw more
current than can safely pass through the microcontroller, an
additional chip, called an integrated circuit (IC) or "motor driver," is

needed on the breadboard.

Challenge 2: Wire the Motors
Collecting Your Components

In order to wire the DC motors, you will need the following components, shown in Figure 7:

Part Quantity Description

A 1 Integrated circuit (SN754410NE motor driver)

B 1 Capacitor (100 uF)

C 4 Flexible insulated wire (8" lengths, stripped at both
ends)

D 6 Jump wires (3 orange and 3 red)

E 6 Flexible jump wires

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 280

Figure 7. Components for wiring the DC motors.

Challenge 2: Wire the Motors

About the IC and Capacitor

The DC motors in the expansion pack can draw up to 1 amp of electric current; about 50 to 1,000

times the amount of current carried in the microcontroller's logic circuitry (1 to 20 milliamps).

Consequently, an additional integrated circuit is needed to interface between the logic circuitry

of the microcontroller and the DC motor circuitry. The IC looks like a smaller version of the

microcontroller, with only 16 pins, instead of 40 pins.

Because the DC motors draw so much current, they can cause fluctuations in the voltage

difference between power and ground. If left unchecked, these voltage fluctuations can disrupt

the microcontroller's logic circuitry, which requires power to be 5 volts and ground to be 0 volts

to function properly. By putting a capacitor from power to ground, these voltage irregularities are

kept to a minimum. Remember that a capacitor is like a surge protector, storing current spikes

and then releasing them to prevent voltage fluctuations.

Challenge 2: Wire the Motors
Adding the IC and Capacitor

Figure 8 shows a diagram of the 16 pins on the motor driver chip. You do not
need to understand all of the pin labels right now. Just note that pin 1 is at the
end of the chip marked by a small semi-circular notch. Like the microcontroller's
capacitor, the capacitor needed for the DC motors has a specific polarity; one
ground pin and one power pin. The ground pin is clearly marked with a minus (-)
sign.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 281

Figure 8. Pin map for the motor controller IC.

1. Insert the IC into the board, so that it straddles the center groove, just
like the microcontroller. Pin 1 should go in hole E36.

2. Connect pins 4 and 5 to ground, using two yellow jump wires from A39
and A40 to ground.

3. Connect pin 8 to power, using an orange jump wire from hole A43 to
power.

4. Connect pins 12 and 13 to ground, using two orange jump wires from
holes J39 and J40 to ground.

5. Connect pin 16 to power, with a yellow jump wire from hole J36 to power,
as shown in Figure 9.

Figure 9. Motor driver IC with power and ground connections.

6. Add the capacitor, inserting the pin marked with a minus sign (-) into a

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 282

ground hole near hole J35, and the other pin into an adjacent power hole,
as shown in Figure 10.

Figure 10. Capacitor in power and ground holes.

Challenge 2: Wire the Motors
Connecting the Motors to the IC

Flexible insulated wire is used to connect the motors to the motor controller IC.
This type of wire is more rigid than the flexible jump wires included in the Starter
Kit, and it is longer than the kit's pre-bent jump wires. The flexible insulated wire
can be connected to the terminals on the motor with a gentle twist, or soldered in
place for greater stability. In either case, be very careful not to put too much
pressure on the motor terminals, as they may tear or break off.

1. At each of the four motor terminals, insert a stripped end of the flexible
insulated wire into the small hole, and gently twist the wire back on itself to
secure it in place, as shown in Figure 11.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 283

Figure 11. Wire leads connected to DC motor terminals.

2. Connect the wires from the right motor to pins 3 and 6 on the motor
controller, by inserting the free ends into holes D38 and D41. 3. Connect
the wires from the left motor to pins 11 and 14 on the motor controller, by
inserting the free ends into holes G38 and G41.

Figure 12. Motor leads inserted into board.

Challenge 2: Wire the Motors
Connecting the IC to the Microcontroller

The connections between the IC and the microcontroller enable you to control
the activity, speed, and direction of each DC motor. These connections may be
made with flexible jump wires, as shown in Figure 13, or - for greater stability -
with carefully routed pre-bent jump wires.

1. Connect pin 1 to Port C2.

2. Connect pin 2 to Port D0.

3. Connect pin 7 to Port C3.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 284

4. Connect pin 9 to Port C1.

5. Connect pin 10 to Port D2.

6. Connect pin 15 to Port D3.

Figure 13. Motor driver connected to microcontroller.

Challenge 3: Attach the Wheels

Attaching wheels to the axles of the DC motors is an interesting
challenge. Each axle is a smooth metal shaft, with a flat face on one
side. In order to function properly, the wheel must be secured so that
it won't slide off the axle and the axle won't turn freely inside the

wheel.

Challenge 3: Attach the Wheels
Collecting Your Components

In order to attach wheels to the DC motors, you will need the following
components, shown in Figure 14:

Part Quantity Description

A 1 PVC foamboard (6mm sheet)

B 10 Machine screws (5/8" 4-40)

C 10 Machine screws nuts (4-40)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 285

Figure 14. Components for attaching wheels to motors.

Challenge 3: Attach the Wheels
About DC Motor Wheels

Wheels are typically attached to DC motor axles with hubs, which fit snugly on
the axles and have threaded holes for securing the wheels. In some cases, the
hubs have set screws, which prevent the hubs from sliding off the axle or
slipping. Figure 15 shows two hubs with their set screws and wheel retaining
screws.

Challenge 3: Attach the Wheels
Making the Hub

A simple version of a set-screw hub can be made with a square piece of PVC
foamboard. The 6mm foamboard is thick enough that a narrow diameter hole can
be drilled into its edge. This way, the set screw can be inserted and driven
perpendicular to the axle.

1. Cut two square pieces of PVC foamboard, each measuring 1-inch by 1-
inch.

2. Measuring from corner to corner, determine the precise center point of
each square and mark this position with the tip of a screwdriver.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 286

3. In the center of each square, drill a hole; at least 11/64-inch in diameter;
to accommodate the axle of each DC motor, as shown in Figure 16.

Figure 16. Square hubs with center holes drilled.

4. Using a 3/32-inch drill bit, drill a hole in the edge of the hub;
perpendicular to the axle hole; so that the tip of the drill bit connects with
the center hole, as shown in Figure 17.

Figure 17. Drilling the set screw hole.

5. Drive a 5/8-inch 4-40 machine screw into the new hole, checking to see
that it enters the center hole, as shown in Figure 18.

Figure 18. Hub with set screw.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 287

Challenge 3: Attach the Wheels
Attaching the Wheels

With your hub built, attaching the hubs to the wheels is relatively straightforward.
You will have to tailor the following procedure to the specific style of wheel that
you have. If you are working with wheels that press fit onto the servo motors, be
careful not to damage any of this original linkage.

1. Drill two or more additional holes through each hub and secure the hubs
to the wheels with 4-40 machine screws, as shown in Figure 19.

Figure 19. Wheel with hub attached.

2. Position the hub and wheel on the DC motor axle and snug up the set
screw to hold the wheel in place, as shown in Figure 20.

Figure 20. Wheel attached to DC motor.

Challenge 4: Control the Motors

Challenge 4 is a software challenge; writing code to drive the DC
motors. If you are used to writing code for servo motors, driving DC
motors takes some getting used to, but it is actually much simpler

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 288

than working with servo motors. With one or two lines of code, you can turn each
motor on or off, reverse its direction, or cause it come to a rigid stop.

Challenge 4: Control the Motors
About the Motor Driver IC

The following table shows the port values associated with different behaviors for
the right and left DC motor. To enable the motors, port C2 (left motor) must be
set equal to 1, and port C1 must be set equal to 1 (right motor). The values of
ports D0 and C3 control the motion of the left motor, while the values of ports D2
and D3 control the motion of the right motor. Note that, as with the servo motors,
the definition of "forward" and "reverse" will depend on how the motor's
orientation with respect to the chassis. If you want to invert these directions for a
motor, simply exchange the position of the Drive A and Drive B wires (e.g. for the
left motor, move the Drive A wire to port C3 and the Drive B wire to port D0).

LEFT MOTOR RIGHT MOTOR

Enable
(Port C2)

Drive A
(Port D0)

Drive B
(Port C3)

Motor
Action

Enable
(Port C1)

Drive A
(Port D2)

Drive B
(Port D3)

Motor
Action

1 0 0 Stop 1 0 0 Stop

1 1 0 Forward 1 1 0 Forward

1 0 1 Reverse 1 0 1 Reverse

1 1 1 Stop 1 1 1 Stop

0 - - Off 0 - - Off

Challenge 4: Control the Motors
Driving a Motor Directly

Unlike a servo motor, you can drive a DC motor directly from the batteries. To
test this, try pulling the motor leads from the IC and inserting them directly into
power and ground.

1. Remove the motor wires from one side of the IC.

2. Insert one of the wires into any power hole.

3. Insert the other wire into any ground hole.

4. Try reversing switching the wires, and observe the motor.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 289

5. Return the wires to their original positions.

Challenge 4: Control the Motors
Driving One Motor

1. Create a new code file and save it as dcmotor.c.

2. Enter the following code:
#include "mxapi.h"

void main(void)

{

 TRISC2 = 0; //Set up Port C2 as an output

 TRISD0 = 0; //Set up Port D0 as an output

 TRISC3 = 0; //Set up Port C3 as an output

 RC2 = 1; //Set Port C2 high (enable left motor)

 RD0 = 1; //Set Port D0 high (forward motion)

 RC3 = 0; //Set Port C3 low (forward motion)

 end(); //End program

}

3. Compile and test your new code.

Challenge 4: Control the Motors
Reversing the Motor

1. Rename your code file dcmotorreverse.c.

2. Enter the following code:

#include "mxapi.h"

void main(void)

{

 TRISC2 = 0; //Set up Port C2 as an output

 TRISD0 = 0; //Set up Port D0 as an output

 TRISC3 = 0; //Set up Port C3 as an output

 RC2 = 1; //Set Port C2 high (enable left motor)

 RD0 = 1; //Set Port D0 low (reverse motion)

 RC3 = 0; //Set Port C3 high (reverse motion)

 end(); //End program

}

3. Compile and test your new code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 290

Challenge 4: Control the Motors
Driving Both Motors

1. Rename your code file bothdcmotors.c.

2. Enter the following code:

#include "mxapi.h"

void main(void)

{

 TRISC2 = 0;

 TRISD0 = 0;

 TRISC3 = 0;

 TRISC1 = 0; //Set up Port C1 as an output

 TRISD2 = 0; //Set up Port D2 as an output

 TRISD3 = 0; //Set up Port D3 as an output

 RC2 = 1;

 RD0 = 0;

 RC3 = 1;

 RC1 = 1; //Set Port C1 high (enable right motor)

 RD2 = 0; //Set Port D2 low (reverse motion)

 RD3 = 1; //Set Port D3 high (reverse motion)

 end(); //End program

}

3. Compile and test your new code.

Challenge 4: Control the Motors
Controlling the Motors' Speed

The speed of the DC motors can be controlled with the microcontroller's internal
pulse width modulator (PWM). The PWM is built-in a feature of the
microcontroller that generates a precisely timed series of high and low voltage
pulses, like those used to drive the servo motors. The PWM outputs the pulses
on two ports: Port C2 (channel 1) and Port C1 (channel 2). When these ports are
connected to the enable pins on the motor controller, the PWM turns the motors
on and off very rapidly, thereby modulating their speed.

A function called pwm_init is used to activate and control the PWM. The pwm_init
function takes three arguments. The first argument sets the frequency of the
pulse series; i.e. how many times per second the PWM cycles between high and

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 291

low voltage. The second two arguments set the "duty cycle" for each of the two
channels; i.e. in each cycle of high and low voltage, what percentage of the time
the voltage is high. The greater the percentage, the faster the motor's speed; the
smaller the percentage, the slower the motor's speed.

Figure 21 shows a two different duty cycles at the same frequency; one with a
duty cycle of 50% high and 50% low, and the other with a duty cycle of 80% high
and 20% low.

Figure 21. PWM at two different duty cycles with the same frequency.

1. Rename your code file pwminit.c.

2. In your main function, remove the lines of code that set up ports C1 and
C2 as outputs, and the lines that set the value of these ports equal to 1, as
shown below. Add a line to initialize the chip's pulse width modulator, at a
frequency of 10,000 hertz, with a duty cycle of 100% on both channels.

#include "mxapi.h"

void main(void)

{

 TRISD0 = 0;

 TRISC3 = 0;

 TRISD2 = 0;

 TRISD3 = 0;

 pwm_init(10000, 100, 100); //Initialize PWM at 10KH

 RD0 = 0;

 RC3 = 1;

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 292

 RD2 = 0;

 RD3 = 1;

 end();

}

3. Compile and test your new code.

Challenge 4: Control the Motors
Changing the Duty Cycle

The pwm_init function sets up the initial duty cycle for each channel; this function
should be used only once in your main function. If you want to change the speed
of a motor later on, you can use a second function, called pwm_duty. The
pwm_duty function takes two arguments: 1) the duty cycle for the motor being
controlled, ranging from 0 (off) to 100 (full speed); and 2) a number indicating
which motor you want to control, with 1 corresponding to motor 1 and 2
corresponding to motor 2.

1. Rename your code file pwmduty.c.c.

2. In your main function, use the pwm_duty function to control the speed of
the motors, as shown below:

#include "mxapi.h"

void main(void)

{

 TRISD0 = 0;

 TRISC3 = 0;

 TRISD2 = 0;

 TRISD3 = 0;

 pwm_init(10000, 100, 100);

 RD0 = 0;

 RC3 = 1;

 RD2 = 0;

 RD3 = 1;

 while(1==1)

 {

 pwm_duty(50,1); //Set cycle 50-50

 pwm_duty(50,2); //Set cycle 50-50

 delay_ms(1000); //Wait 1000 ms

 pwm_duty(75,1); //Set cycle 75-75

 pwm_duty(75,2); //Set cycle 75-75

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 293

 delay_ms(1000); //Wait 1000 ms

 pwm_duty(100,1); //Set cycle 100-100

 pwm_duty(100,2); //Set cycle 100-100

 delay_ms(1000); //Wait 1000 ms

 }

}

3. Compile and test your new code.

Challenge 4: Control the Motors
Using a Function to Control the Motors

With one function, you can controls the speed and the direction of each motor.
The function will extend the capability of pwm_duty, taking three arguments: 1) a
number indicating which motor you want to control, with 1 corresponding to motor
1 and 2 corresponding to motor 2; 2) the duty cycle for the PWM for the motor
being controlled, ranging from 0 (off) to 100 (full speed); and 3) a number
indicating the direction of the motor, with 1 corresponding to forward and 0
corresponding to reverse. In the code below, note the use of the tilde (~), which
inverts the value of any variable. For example, if x=1, then ~x = 0; if x=0, then ~x
equals 1. In the motor function, the tilde ensures that drive A and drive B are
always opposite values.

1. Rename your code file motorfunction.c.c.

2. Modify your code file, as follows:

#include "mxapi.h"

void motor(char motor, char speed, char direction)

{

 if(motor == 1)

 {

 pwm_duty(speed, motor);

 RD0 = direction;

 RC3 = ~direction;

 }

 else if(motor == 2)

 {

 pwm_duty(speed, motor);

 RD2 = direction;

 RD3 = ~direction;

 }

}

void main(void)

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 294

{

 TRISD0 = 0;

 TRISC3 = 0;

 TRISD2 = 0;

 TRISD3 = 0;

 pwm_init(10000,100,100);

 motor(1,100,0);

 motor(2,100,1);

 while(1==1);

}

3. Compile and test your new code.

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 295

Arduino Uno Reference Sheet

I am the way and the truth and the life. No one comes to the Father except through me. – Jesus Matthew 14:16 296

Resistor Band Reference

