Heat Assignment

$$
F=\frac{9}{5} C+32
$$

$$
K=C+273.15
$$

Show Your work. Circle your answer.

Convert the following to Fahrenheit using a calculator. For a high grade, write a computer program or Excel worksheet that converts any temperature instead.

$25^{\circ} \mathrm{C}$	Kindling temperature of Paper $218-246^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}$	Kindling temperature of Iron $1,315^{\circ} \mathrm{C}$
$-273^{\circ} \mathrm{C}$	Kindling temperature of Phosphorus $34^{\circ} \mathrm{C}$

Convert the following using a calculator.

$74^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$	Mercury melts at $234.28^{\circ} \mathrm{C}$, What is that in ${ }^{\circ} \mathrm{F}$
$100^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{K}$	Lead melts at $621.7^{\circ} \mathrm{F}$, What is that in ${ }^{\circ} \mathrm{K}$
$20^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{K}$	Air in a blimp is $185^{\circ} \mathrm{F}$, what is that in ${ }^{\circ} \mathrm{K}$

$\mathbf{C}_{\text {sp }}=$ Specific Heat $\mathbf{J} /\left(\mathbf{K g}^{\circ} \mathbf{C}\right)$
$\mathbf{Q}=$ Heat in Joules $\mathrm{KgM}^{2} / \mathbf{S}^{2}$
$\Delta \mathbf{T}=$ Temp Change in ${ }^{\circ} \mathbf{C}$
$\mathbf{M}=$ Mass in $\mathbf{K g}$

Specifc Heats In $\mathrm{J} / \mathrm{Kg}{ }^{\circ} \mathrm{C}$	
$\mathrm{H}_{2} \mathrm{O}$	4200
Cu	384.5
Fe	449.4

How many joules of heat are required to raise the temperature of 550 Kg of water from $12.0^{\circ} \mathrm{C}$ to 18.0 ${ }^{\circ} \mathrm{C}$?	
How much heat is lost when a 640 g piece of copper cools from $375^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$?	
How much heat is transferred when a 24.7 kg iron ingot is cooled from $880^{\circ} \mathrm{C}$ to $13^{\circ} \mathrm{C}$?	
How many degrees would the temperature of a 450 g ingot of iron increase if 7600 J of energy are applied to it?	
How much change in temperature would the addition of 35000 Joules of heat have on a 538.0 g sample of copper?	
4786 Joules of heat are transferred to a 89.0 gram sample of an unknown material, with an initial temperature of $23.0^{\circ} \mathrm{C}$. What is the specific heat of the material if the final temperature is $89.5^{\circ} \mathrm{C}$?	
The temperature of a 55 gram sample of a certain metal drops by $113^{\circ} \mathrm{C}$ as it loses 3500 Joules of heat. What is the specific heat of the metal?	

