Physical Science - Math Worksheet - Kinetics and Dynamics

Example: A Car moving North at 5.0 m per second smoothly accelerates to
$\mathbf{2 0 . 0} \mathbf{~ m}$ per second in $\mathbf{3}$ seconds. Calculate the car's acceleration. North is + .

$$
a_{a v g}=\frac{v_{t}-v_{i}}{\Delta t}
$$

$\mathrm{a}_{\text {avg }}=(20 \mathrm{~m} / \mathrm{s})-(5 \mathrm{~m} / \mathrm{s}) / 3 \mathrm{~s}$
$\mathrm{a}_{\text {avg }}=5 \mathrm{~m} / \mathrm{s}^{2}$

1. A car moving at $\mathbf{+ 2 0} \mathbf{m} / \mathrm{s}$ smoothly slows to a stop, $0 \mathrm{~m} / \mathrm{s}$ in 6.0 secs. Calculate the acceleration of the car. East is positive
2. Kevin dropped a 45 lb disk out of his second story window. The disk starts from rest and hits the sidewalk 1.5 s later with a velocity of $14.7 \mathrm{~m} / \mathrm{s}$. Find the average acceleration of the disk.
3. Hansel's father's car accelerates from $0 \mathrm{~m} / \mathrm{s}$ to $45 \mathrm{~m} / \mathrm{s}$ northward in 5 seconds. What is the acceleration of the car?

Example: A 2000 kg dump truck is travelling East at $8.0 \mathrm{~m} / \mathrm{s}$. What is its momentum?
$p=m v$
$\mathrm{p}=(2000 \mathrm{~kg})(8.0 / \mathrm{s})$
$\mathrm{p}=16000 \mathrm{kgm} / \mathrm{s}$

1. Ameris is driving her new 2000 kg car away at $26 \mathrm{~m} / \mathrm{s}$. What is the momentum of the car?
2. Alaina is about to catch a 0.55 kg kick ball travelling toward her at $-25 \mathrm{~m} / \mathrm{s}$. What is the momentum of the kickball?
3. Xavier throws a 400 g football $20 \mathrm{~m} / \mathrm{s}$ to his friend Santiago running directly away from him at $10 \mathrm{~m} / \mathrm{s}$. What is the football's momentum from Santiago's point of view?
4. Alaina's bicycle has a momentum of $25.00 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ and a velocity of $2.5 \mathrm{~m} / \mathrm{s}$. What is the bicycle's mass?
5. Wimpy science teacher Bouwsma needs to tackle Barnett "the Powerful" in a faculty meeting. Bouwsma's mass is 55.0 kg and Barnett's is 100.0 kg . Barnett is running at a velocity of $3.0 \mathrm{~m} / \mathrm{s}$ directly toward Bouwsma. What is the minimum velocity Bouwsma needs to stop Barnett's forward momentum?

Example: The Mars rover Curiosity has a mass of 899 kg . How much would it weigh on Earth? Earth has a gravity constant of $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
$W=(899 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
$\mathrm{W}=8819 \mathrm{kgm} / \mathrm{s}^{2}$
$\mathrm{W}=8820 \mathrm{~N}$ Cut to sigfigs, and a $\mathrm{kgm} / \mathrm{s}^{2}$ is the same as a Newton

1. The Moon has a gravity constant of $1.62 \mathrm{~m} / \mathrm{s} 2$. How much would Peter weigh on the Moon, if he weighs 100 kg on earth?
2. If Amanda weighs 105 lb on Earth, and a kg is 2.2 lb , how many Newtons would she weigh?
3. The Mars rover Curiosity has a mass of 899 kg . How much would it weigh on Mars? Mars' gravity is only 38% as strong as Earth's.

Example: How much force is required to accelerate a 2 kg mass at $3 \mathrm{~m} / \mathrm{s}^{2}$?
$\mathrm{F}=\mathrm{ma}$
$F=(2 \mathrm{~kg})\left(3 \mathrm{~m} / \mathrm{s}^{2}\right)$
$\mathrm{F}=6 \mathrm{kgm} / \mathrm{s}^{2}=6 \mathrm{~N}$

1. During a water fight, how much force is required to accelerate a 12 kg mass of ice water at $5 \mathrm{~m} / \mathrm{s}^{2}$?
2. A Falcon 9 rocket has a thrust of 6 million Newtons and a loaded mass of $500,000 \mathrm{~kg}$. What is the rocket's acceleration?
3. Two women, Euodia and Syntyche, are fighting over a 2kg steak. Euodia pulls it North with a force of 4 N . Syntyche pulls it South with a force of 2 N . What is the acceleration of the steak?
4. A Borris Badenoff drops a 1000 kg anvil off a cliff directly above Bullwinkle the Moose. What is the force behind the falling anvil?
