

Math Notes for Beginning Programmers

 Solutions and Explanations for Commonly
Asked HS-MS Programming Questions

by David J. Bouwsma

Westminster Christian School

March 3, 2014

It is fun to be smart.

Math Notes For Programmers 2 D. J. Bouwsma, March 3 2014

 Distance formula

If you have two objects, space ships,
airplanes or whatever, you can figure out
how far apart they are with this formula:

If the first object is at position (X1,Y1), and
the second object is at position (X2,Y2), then

 (X2,Y2)
The Pythagorean Theorem can be used to
calculate the distance between them.
According to Pythagoras, if you know how long
distance A is and you know how long distance B
is, you can figure out distance C which is the
distance between our two points.

 The formula is as follows:

C2=A2+B2 This is Pythagoras’ equation.

 Taking the square root of both sides yields
distance C, the distance between the two
points.

A=X2-X1

B=Y2-Y1

The final formula, after substituting for
A, B and C, ends up being:

Which would be programmed as:

DIST = SQR((X2-X1)^2+(Y2-Y1)^2)

NOTE: When you make objects on the
the screen, remember perspective.
Start from the background and work
forward.

Since A is simply the difference between X2
and X1, and B is the difference between Y2
and Y1, and C is the distance, the following
formula is possible.

(X1,Y1)

A

B

C

Math Notes For Programmers 3 D. J. Bouwsma, March 3 2014

 Impact Damage and Velocity

When one object smacks into
another, how do you tell what
happens to the two of them?
Willem ‘sGravesande, a
Dutch researcher with a
weird name, discovered that
when brass balls are
dropped into clay, a ball that
travels twice as fast makes
four times as big a hole, while
a ball twice as heavy
traveling the same speed
only makes a hole only twice
as large. Therefore the
following applies:

If E is the amount of energy an object has, or if you wish, how much damage it does when
it hits, and M is the mass or weight of the object, and V is the velocity or the speed it is
traveling, then:

 E = ½ mv2

This can be programmed as follows:

DAMAGE = WEIGHT * SPEED ^ 2

Likewise, the energy needed to reach a
certain speed V (in a vacuum) can be
found using the following formula:

Use the NASA formulas to the left to
calculate force or energy. They are very
helpful.

Math Notes For Programmers 4 D. J. Bouwsma, March 3 2014

Linear Gravitational Effects

If an object travels across the Earth, or a planet (a place where
gravity always pulls down) and the object is not far away,
hundreds of miles, for example, then the following is true:

1. Gravity is a constant. On our Earth, that constant is 9.8 meters per second, every
second. (In a program, use a number that makes things look realistic.)

2. Gravity always pulls objects down at the same rate no matter how fast they are
going or what direction they are traveling.

3. Gravity, just like all other forces (called vectors) is added to predict an object’s
path.

 Gravity vector g

Programming this concept is easy:

1. At the top of your program include a gravity constant. This number will depend upon
the execution speed of the computer, how far away the object is supposed to be and
many other factors. Experiment. Your number should look something like this:

g = .013

2. Now, add the gravity constant, g to your up and down speed, Dy when you calculate
the next location of your object. Look how easy this is:

Dy = Dy + g
Y = Y + Dy

Every movement by any object across the
computer screen can be described in terms
of how much it moves horizontally and how
much it moves vertically. Mathematicians
like to use Dx and Dy for this movement.

Each time the computer recomputes the
position of the object, the Y movement, or
rate of speed the object is rising or falling,
has the gravity constant subtracted from it.

Notice we add, not subtracted gravity. Higher
numbers go down not up on a computer screen.

 Add gravity to motion
 Change location by motion

Math Notes For Programmers 5 D. J. Bouwsma, March 3 2014

 Calculating the Position of a Rotating Object

Many things in this world arc, orbit or swing, a base ball bat,
opening doors, storms, planets, arms and legs to name just a
few. All are all explained by simple trig formulas.

The CENTER of the swing or axis is located at (X,Y),
The DISTANCE away from the center or Radius is R,
The ANGLE (in Radians, which we will explain later) is

A,

Radius R

Angle A

 (R cos (A) + X , R sin (A) + Y)
Center (X,Y)
 Sin is just the up and down part of
 distance R, Cos the left and right part.

QB Programming examples:

‘ SPOKES OF A WHEEL
SCREEN 12
R=100
FOR A=0 TO 3.14159*2 STEP .1
 LINE(320,240)-(R*SIN(A)+320,R*COS(A)+240)
 NEXT A

‘ SPIRAL
SCREEN 12

CYCLES=15
FOR A=0 TO 3.14159*2*CYCLES STEP
.01
 R=R+.01
 PSET(R*SIN(A)+320,R*COS(A)+240)
 NEXT A

Note, after you multiply the radius by
the sine and cosine, the coordinates
of the center, (X,Y) have to be
added.

The X,Y coordinates of any point on the
circle can be calculated.

Starting the
angle at zero
starts your object
here.

Give the angle to the sine and cosine
functions in π radians. π radians work like

degrees, but a full circle is 2π instead of

360. Half way around is π instead of 180.

½ π is 90, and so on.

½π

π

3/2π

2π
π = 3.14159 Pronounced “Pie” It is called an “irrational”

number because, it goes on forever after the decimal point.

THEN

IF:

Math Notes For Programmers 6 D. J. Bouwsma, March 3 2014

 Cartesian and Polar Coordinate Conversions

Cartesian coordinates are the familiar (x, y) coordinate
system. PSET, and LINE use this system. Polar
coordinates use an angle and distance to place objects. The
CIRCLE command uses polar coordinates.

 Here is the way to convert
 from one system to
 another.

 New Location

 Dy = R sin (Arad) π = 3.14159265 (approximate)
Dy
 Dx = R cos (Arad)
R

 Old Location Arad

(X1,Y1) Dx

This equation

 for (X2-X1)0

 must be
adjusted
by quadrant
using the
following:

IF (Y2-Y1)>0 AND (X2-X1)>0 THEN A=90-A
IF (Y2-Y1)>0 AND (X2-X1)<0 THEN A=270-A
IF (Y2-Y1)<0 AND (X2-X1)>0 THEN A=90-A
IF (Y2-Y1)<0 AND (X2-X1)<0 THEN A=270-A

 Given:
Adeg is angle A in degrees
Arad is angle A in radians
(x1,y1) origin or beginning point
R is the distance traveled from (x, y)
Dx the amount of horizontal distance covered.
Dy the amount of vertical distance covered

QBasic supports Arc Tangent and Modulo arithemtic with the ATN
function and the MOD operator. Arc sine, cosine and tangent simply
undo sine, cosine and tangent to find the angle.
Angle=ArcSin(Sin(Angle))

MOD is division keeping the remander rather than the quitient. In
this formula we divide by 2π. MOD keeps us from going past 2π and
getting an error.

Math Notes For Programmers 7 D. J. Bouwsma, March 3 2014

Handling the Edge of Screen Animation

There are four options for objects that encounter the edge of the screen. They can:

1. Crash or stick to the edge.
2. Bounce (see notes below).
3. Wrap to the other side of the screen.
4. Continue unseen.

Programming: A CHECK FOR THE EDGE OF THE SCREEN
 R

 (X,Y)

IF X+R>640 OR X-R<1 THEN

 Dx=0 : Dy=0
 Dx= -Dx*e : X=X+2*Dx
 IF X+R>640 THEN X=X-640

 IF X-R<1 THEN X=X+640
 INVISIBLE=0
END IF

IF Y+R>480 OR Y-R<1 THEN

 Dx=0 : Dy=0
 Dy= -Dy*e : Y=Y+2*Dy
 IF Y+R>480 THEN Y=Y-480

 IF Y-R<1 THEN Y=Y+480
 INVISIBLE=0
END IF

Notes on bouncing objects or rays:
1. The laws of Physics state that the angle of incidence (or the angle
it is coming in on) is equal to the angle of reflection (the angle it goes
out on.)
2. When an object bounces, in the real world, objects are inelastic,
which means they lose energy each time they bounce. A rubber ball
may have an elasticity of .75 and bounce back 75% as high the second
bounce, while your neighbor’s dog has an elasticity of about .03 and
basically just splats when dropped.

Where :
(X,Y) is the center of the object.
Dx is the object’s horiz. movement
Dy is the object’s vert. movement
R is the object’s radius and
the screen is 640X480 pixels.

Remember the size of the object and
bounce on its edge, not its center.

Add movement once to cancel the
previous move, and then add it again
to plot a reverse course.

Draw and erase objects only if INVISIBLE
is zero to exclude destroyed objects.

Please don’t

do that again.

Crash 
Bounce 
Wrap 

Crash 
Bounce 
Wrap 

Elasticity: see
note below

Math Notes For Programmers 8 D. J. Bouwsma, March 3 2014

Infusing Graphics into Text

It is possible to make your own letters or predict where
text will print in your picture. Letters can attack your
spaceship, or be an impenetrable wall to tanks. All you
need to know is where they are in your graphics or where
to place your graphics to fit into them. Find the
following information:

1. The maximum size of the graphics screen. (640x480 in SCREEN 12)
2. The maximum size of the text screen. (80x30 in SCREEN 12)

Given: Xmax is the right edge of the screen in graphics. 640?

Ymax is the bottom edge of the screen in graphics. 480?
Hmax is the right edge of the screen in text.
Vmax is the bottom edge of the screen in text.

If you wanted to draw a box around a letter
located COL letters over and ROW letters down,
use the formulas to the right.

Program example:

SCREEN 12
XMAX=640:YMAX=480
HMAX=80:VMAX=30

INPUT “COL,ROW”;COL,ROW

 FOR I=1 TO 2400
 PRINT CHR$(INT(RND*26)+65);
 NEXT I

 THE CODE BELOW DRAWS A BOX AROUND THE LETTER.

LINE ((COL-1)*XMAX/HMAX,(ROW-1)*YMAX/VMAX)-(COL*XMAX.HMAX-1),ROW*YMAX/VMAX-1),14,B

F

The program
generates
random
letters here
so you can
see your
work.

Math Notes For Programmers 9 D. J. Bouwsma, March 3 2014

 Using Raster Graphics & Matrices

“Stick Man”

 1 2 3 4 5

1 DATA 0,0,4,0,0 FOR Y=1 TO 9

2 DATA 0,4,4,4,0 FOR X=1 TO 5

3 DATA 4,0,4,0,4 READ C

4 DATA 0,4,4,4,0 PSET (X,Y) , C

5 DATA 0,0,4,0,0 NEXT X

6 DATA 0,0,4,0,0 NEXT Y

7 DATA 0,0,4,0,0

8 DATA 0,4,0,4,0

9 DATA 4,0,0,0,4

Find pictures on line and make
cartoons, realistic space ships,
husky fighting men and beautiful
landscapes. Pictures in BMP
format can be read into arrays and
displayed using the same
techniques.

Count of the number of lines.

Count of the number across.

If you had a table of colors like the following,
 you could create a picture like the one to
the left.

0,0,4,0,0 The numbers are QBasic standard colors.

0,4,4,4,0 Four is red and zero is black.

4,0,4,0,4

0,4,4,4,0 PROGRAMMING: A single pixel can

0,0,4,0,0 be colored using the following:

0,0,4,0,0 X=1 : Y=1

0,0,4,0,0 DATA 4

0,4,0,4,0 READ C  This gets the 4 in DATA and puts it in C

4,0,0,0,4 PSET (X,Y),C  This makes pixel (X,Y) color C

(1,1) (2,1) (3,1)

(1,2)

(1,3)

Math Notes For Programmers 10 D. J. Bouwsma, March 3 2014

 Using Raster Graphics & Matrices 
 Scaling and Effects

SCALABLE BOXES MADE FROM MATRIX INFORMATION:
Instead of making pictures out of dots, pictures can be
made out of boxes. This allows them to be “blown up”, or
scaled to any size you want, and saves computer memory
at the same time. To do this, each dot must become a box
with a left coordinate and a right coordinate.

FOR EACH BOX, THIS IS THE MATH:

Programming:

FOR I=1 TO YMAX
FOR J=1 TO XMAX
 READ C
 LINE (X+S*(I-1) ,Y+S*(J-1)) - (X+S*I-1 , Y+S*J-1),C,BF
NEXT J
NEXT I

Pictures may also be made using circles of varying sizes. Small radii would make the
picture look pointalistic, while large radii would give it a bubbled look. Each circle must
have a radius located one half a scale over and lower than the upper left corner of a box.
To try it, just replace the LINE command shown above with this:

CIRCLE (X+S*(I-1)+S/2, (Y+S*(J-1)+S/2), S/2
PAINT (X+S*(I-1)+S/2, (Y+S*(J-1)+S/2) ,C  Put this in to fill in the circles

Given:
(x,y) the location of the upper right corner of the upper right box.
s the scale, that is, the size of each box.
xmax and ymax, the number of boxes across (X) and down (Y).

Math Notes For Programmers 11 D. J. Bouwsma, March 3 2014

Bio-motion

Although it is extremely difficult to program a simulation of the Human

body’s motion, making a stick figure travel across the screen is relatively easy.

Here is a sample of a program:

You can add arms and accessorize your stick man with

guns and other dangerous objects. Consider using SIN and

COS to put in knees. It would be easy to have 3-D effects

by changing radius R to scale the man when he moves

toward or away from you. Be sure to increase or decrease

DX and DLX depending on how far away our stick man is so

he moves more slowly when he is far away.

(x,y)

r

(x,y+r)

(x,y+r*5)

(x - Lx,y+r*9)

(x - Lx,y+r*9)

First, make a stick man. The example to the right

would move any time you change the (X,Y)

position of the head, and it would scale larger or

smaller when you change R, the radius.

Notice that the trailing leg trails because Lx is

subtracted from X and the advanced leg is ahead

because Lx is added to X.

Program the Lx variable to bounce back and forth

between +Max and –Max at the same speed that

the man moves so it looks like his back foot stays

in the same place as he “walks”.
-Max 0 +Max

x = 20: y = 240

r = 5: c = 14

dx = .3: dLx = dx

Lmax = 8: Lx = 2

DO

 COLOR C

 {Draw the stick man here}

FOR i = 1 TO 30000: NEXT i

 COLOR 0

 {Redraw the stick man here to erase}

 x = x + dx

 Lx = Lx + dLx

 IF Lx > Lmax OR Lx < -Lmax THEN dLx = -dLx

LOOP

Math Notes For Programmers 12 D. J. Bouwsma, March 3 2014

Auto Targeting Using the Geometry of Similar Triangles

You can program a gun to aim wherever the mouse points or wherever an airplane flies.
Using the same principles, you can make an enemy always seek a player. All it takes is
a little bit of simple geometry. The trick is to keep the Xs and Ys proportional. Simply,
multiply the ratio of the length of the gun and the distance of the object by X and Y.

First, subtract the Ydistance = Y3 – Y1

position of the target

from the position of the

gun

Then calculate the Xdistance = X3 – X1

distance from the object

using the Pythagorean

theorem.

Given the gun length: Gunlength, Xdistance and Ydistance calculate the muzzle coordinates of

the gun

Any bullets fired will travel at the following rate:

Programming auto tracking gun: Programming bullet movement:

Xdist = x3 - x1

Ydist = y3 - y1

Dist = SQR((x3 - x1) ^ 2 + (y3 - y1) ^ 2)

x2 = dist * (GunLn / Xdist) + x1

y2 = dist * (GunLn / Ydist) + y1

Line (x1, y1) - (x2, y2)  This is the gun. It always points toward (x3,y3)

(X1, Y1)

(X2, Y2)

(X3, Y3)

BulletDx = power * (GunLn / Xdist)

BulletDy = power * (GunLn / Ydist)

Remember
 means
change, so
 X is X
movement.

Mathematicians say
that triangles are
similar, if the big
one just a larger
version of the small
one. That is just
what we have
happening here.

Math Notes For Programmers 13 D. J. Bouwsma, March 3 2014

Single Point Gravitational Fields in 2-D Space

According to Newton’s law, gravitation between two objects is calculated by the following:

Calculating gravity in 2-D space is more complicated
than calculating the path of a bouncing ball, because
both x and y are changed by gravity, and the gravity
itself decreases by the square of number of radii away
you are from the object. The first step is to calculate
the power of gravity at the location of the object.
 Given:
 r1 and r2 - the radii of the two objects
 g1 and g2 - the gravitational pull of both objects
 (x1,y1) & (x2,y2) – the position of the objects

The gravity will affect every object in space. When the Sun pulls the Earth toward it, the
Earth also pulls the Sun toward it. For all objects, planets, stars, space ships, the new
movement is the former movement plus the gravity pull of all the other objects around it.

This is how to do the sun. (The planet does move the sun.):

(X1, Y1)

(X2, Y2)

R1

R2

WHERE F1 and F2 are the two forces of gravity.
 G is 6.67 X 10 -11 a universal constant.
 m1 and m2 are the masses of the objects
 R is the distance between the objects.

Remember means change, so
 X is the X movement, or Dx if
you are a mathematician.

Newton

Math Notes For Programmers 14 D. J. Bouwsma, March 3 2014

Programming the movement of the Earth around the Sun would look something like this:

Dxe = Dxe + (gs * (xs - xe)) / (SQR ((xs - xe) ^ 2 + (ys - ye) ^ 2) / rs ^ 2
Dye = Dye + (gs * (ys - ye)) / (SQR ((xs - xe) ^ 2 + (ys - ye) ^ 2) / rs ^ 2

Where the Sun is located at (xs, ys); it is moving at Dxs, Dys; has radius rs, and gravity gs,
and the Earth is located at (xe, ye); it is moving at Dxe, Dye; has radius re, and gravity ge.

NOTE: The Sun will need its movement changed by
the Earth’s gravity to be completely accurate, but
because the Earth has about one millionth the mass, it
is usually ignored.

ACHIEVING A PERFECT CIRCULAR ORBIT:

Sometimes you want your object in space to travel in a
perfect circular orbit. In order to orbit an object, you
need to be travelling at a right angle to it. The formula
for the perfect sideways speed (v or velocity) for a
circular orbit of radius r and gravity G is:

This is how you could program it:

 dst = Sqr((xe - xs) ^ 2 + (ye - ys) ^ 2)

 dstx = xs - xe
 dsty = fs - ye
 gt = G / (dst ^ 2)

 Dye = dstx / dst * Sqr(gt * dst)
 Dxe = -dsty / dst * Sqr(gt * dst)

1. Calculate the DISTANCE from the
gravity source.

2. Calculate the HORIZONTAL AND

VERTICAL DISTANCE.
3. Calculate the GRAVITY at that

distance.
4. Make the VERTICAL SPEED the

horizontal part of the total speed.
5. Make the HORIZONTAL SPEED the

vertical part of the total speed.

To move at
a right angle
to
gravitation,
move x to
counter y
gravity and
move y to
counter x
gravity.

Math Notes For Programmers 15 D. J. Bouwsma, March 3 2014

2-D Circular Body Collision

IF YOU KNOW THE FOLLOWING:

1. The center and radius of each object.
2. The velocity Dx, Dy for both objects.
3. The mass of both objects.

IT IS POSSIBLE TO CALCULATE:

1. The distance the objects are from each other, AND if they hit each other.
2. The collision point of the two objects.
3. Then, from those, the new Dx, Dy motion for the two objects.

First calculate the distance between the two
objects, and check to see if it is less than or equal
to the two radii added.

Programmed, it would look something like this:

Dist = SQR ((x2 - x1) ^ 2 + (y2 – y1) ^ 2)
IF r1 + r2 <= Dist Then

The collision point for circles with the same radius is an average of their positions:

For circles at (X1,Y1) and (X2,Y2) it would be:

For circles with different radii, the formula is:

If you want to program an explosion
at the collision point, do this:

ExplosionX = (x1 * r2 + x2 * r1) / (r1 + r2)
ExplosionY = (y1 * r2 + y2 * r1) / (r1 + r2)

Pythagorean Theorem for Calculating Distance:

Math Notes For Programmers 16 D. J. Bouwsma, March 3 2014

2-D Circular Body Collision 

Calculating the new velocities after collision

For circle one the new velocity is:

 Net Momentum + Relative Energy Transferred

For circle two:

'---- Plot circle-circle bounce ----------

ndx1 = (dx1 * (m1 - m2) + (2 * m2 * dx2)) / (m1 + m2)

ndy1 = (dy1 * (m1 - m2) + (2 * m2 * dy2)) / (m1 + m2)

ndx2 = (dx2 * (m2 - m1) + (2 * m1 * dx1)) / (m2 + m1)

ndy2 = (dy2 * (m2 - m1) + (2 * m1 * dy1)) / (m2 + m1)

'---- Change the motions---------------

dx1 = ndx1

dy1 = ndy1

dx2 = ndx2

dy2 = ndy2

This is how collisions can be
programmed for circle 1 with a
mass m1, and movement dx1,
dy1 striking circle 2, mass m2
and movement dx2, dy2:

Note: It is important not to
overwrite the original
movement of the circles until
all calculations are complete.

Math Notes For Programmers 17 D. J. Bouwsma, March 3 2014

Rotating Objects in 3-D Space

3-D rotation is really 2-D rotation applied three times. Here is a rotation matrix for the
points (X,Y,Z) rotated by the angles Ax, Ay and Az in π radians, all programmed and
ready to go. See CALCULATING THE POSITION OF A ROTATING OBJECT above for a
discussion of π radians. There are several ways to do 3-D graphics. In this one, Z
moves objects up and to the right to make them look farther away. Note that the points,
X, Y, Z are zero at the point of rotation. When you plot them on the screen, plot just

'----Rotation on the X-axis----
NewY = y*cos(Ax) - z*sin(Ax)
NewZ = z*cos(Ax) + y*sin(Ax)
y = NewY
z = NewZ

'----Rotation on the Y-axis----
NewZ = z*cos(Ay) - x*sin(Ay)
NewX = x*cos(Ay) + z*sin(Ay)
x = NewX

'----Rotation on the Z-axis----
NewX = x*cos(Az) - y*sin(Az)
NewY = y*cos(Az) + x*sin(Az)

Rotatedx = NewX
Rotatedy = NewY
Rotatedz = NewZ

the X and Y values, with distance
from the upper edge added.
Something like this:
Pset (X +320, Y+240)
(Z is built into
X and Y.)

